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A rigorous theory for the generation of a large-scale magnetic field by random non-helically forced
motions of a conducting fluid combined with a linear shear is presented in the analytically tractable
limit of low Rm and weak shear. The dynamo is kinematic and due to fluctuations in the net
(volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation
aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm
theoretical footing. Numerically observed scalings of the wavenumber and growth rate of the fastest
growing mode, previously not understood, are derived analytically. The simplicity of the model
suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic
turbulence.
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Introduction. Magnetogenesis, or origin of cosmic
magnetism, is one of the fundamental problems in theo-
retical astrophysics. It has long been believed that the
magnetic fields observed in most astrophysical bodies owe
their existence to the dynamo effect associated with the
turbulence of the constituent plasmas. It is not contro-
versial that turbulence of a conducting fluid amplifies
magnetic fluctuations at scales comparable to or smaller
than the scale of the motions. Small-scale magnetic fluc-
tuations are indeed observed ubiquitously, but in most
astrophysical systems, one also finds magnetic fields co-
herent on scales larger than the scale of the turbulence
(e.g., [1]). Generation of such fields, or mean-field dy-
namo action, is expected to require a combined action of
turbulence and some large-scale-coherent feature. One
well-known such additional ingredient is net kinetic he-
licity (or, more generally, reflectional asymmetry) of the
motion. Under certain conditions, its presence can cause
growth of large-scale (“mean”) magnetic field, known as
the α-effect [2]. While deriving the α-effect for realistic
turbulent systems requires rather drastic closure assump-
tions, which usually cannot be justified rigorously and
have, in fact, been called into question by numerical and
analytical considerations [3], it is at least clear that the
effect exists in the physically realizable and analytically
treatable limit of low Rm [2, 4]. This proof-of-concept an-
alytical result, together with intuitive arguments [5] and
a body of numerical evidence [6, 7], have helped build
a case for the α-effect as a real physical phenomenon
(although whether it can coexist with the small-scale dy-
namo at large Rm is far from certain [3]).

It has been suggested [8–12] that even in the absence
of mean helicity, mean-field dynamo action is possible if
a large-scale velocity shear is present. The importance of
such a possibility can hardly be overestimated, as shear
is a ubiquitous feature in astrophysics (usually associ-
ated with differential rotation). A recent numerical study
[13, 14] showed that the shear dynamo does exist, but its

nature has remained poorly understood. The uncertainty
is increased by the fact that, while the original derivation
of the effect relied on a quantitative outcome of a closure
calculation [11], the effect proved difficult to identify by
numerical computation of the mean-field-theory coeffi-
cients [15] and appeared to go away in rigorously solv-
able limits: the white-noise-velocity model and low-Rm
magnetohydrodynamics [4, 16–18] (but see [19]).
In this Letter, our aim is a minimal proof-of-concept

calculation that puts the shear dynamo effect on a
firm theoretical footing akin to that enjoyed by the α-
effect. We propose a very simple quasilinear mean-
field theory that rigorously predicts a large-scale dynamo
driven by randomly forced shearing waves in the limit of
Rm ≪ Re ≪ 1. The effect requires no adjustable param-
eters. We also recover the scalings of the wavenumber
and growth rate of the fastest-growing mode that were
observed in a number of numerical studies [13, 14, 20]
but have not so far been explained analytically.
Shearing Waves. First let us introduce a model veloc-

ity field that will be used to obtain a dynamo. Consider
an incompressible fluid with an imposed background lin-
ear shear, U = Sxey, and assume that the magnetic field
is dynamically weak, so the Lorentz force is negligible.
Then the velocity deviation from U satisfies

∂tu+Sx∂yu+Suxey+u ·∇u = −∇p+ν∇2u+f , (1)

where p is pressure determined from incompressibility
∇ · u = 0, ν is viscosity and f is a random body force, as-
sumed to be statistically homogeneous in time and space
and to have a characteristic scale ℓf .
We now make two simplifying assumptions. First, let

Re ∼ urmsℓf/ν ≪ 1, so we can neglect the nonlinear term
in Eq. (1). Second, let ∂zu = 0 and ∂zf = 0, result-
ing in a “quasi-2D” velocity with all three vector com-
ponents but no z-dependence. This velocity will make
our calculations particularly transparent. As indicated
by numerical experiments [21], it is a favorable but not a
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uniquely special case as a dynamo. The xy-plane velocity
now has a stream function: u⊥ = ez × ∇Φ. Similarly,
f⊥ = ez × ∇F . We seek solutions of (the linearized)
Eq. (1) as superpositions of “shearing waves” [22]:

Φ =
∑

k0

Φk0
(t) eik(t)·r, uz =

∑

k0

uzk0
(t) eik(t)·r, (2)

where k0 = kx0ex + kyey, k(t) = (kx0 − Stky)ex + kyey.
The amplitudes of the shearing waves satisfy [23]

∂t
[

k2(t)Φk0

]

= −νk4(t)Φk0
+ k2(t)Fk0

, (3)

∂tuzk0
= −νk2(t)uzk0

+ fzk0
. (4)

Eq. (3) was obtained by taking ez · [∇× Eq. (1)]. For
simplicity, let us consider the forcing to be white in time
(or, equivalently, to have a correlation time much shorter
than the viscous relaxation time ℓ2f/ν). Then the two-
point velocity correlators are

〈

Φk0
(t)Φ∗

k′

0

(t′)
〉

= δk0,k′

0
Gν(t, t

′)
k2(t′)

k2(t)

〈

|Φk0
(t′)|2

〉

, (5)

〈

uzk0
(t)u∗

zk′

0

(t′)
〉

= δk0,k′

0
Gν(t, t

′)
〈

|uzk0
(t′)|2

〉

, (6)

where Gν(t, t
′) = exp

[

−ν
∫ t

t′
dt′′k2(t′′)

]

. Thus, the cor-

relation time of our velocity field is τc ∼ ℓ2f/ν. In a more
general case when Re is not small, the velocity correlation
time is set by the nonlinear terms, so τc ∼ ℓf/urms is the
typical turnover time of the turbulence. Non-rigorously,
this case is included in our analysis. To accommodate it,
we introduce the Strouhal number St ∼ urmsτc/ℓf (fol-
lowing [4]) — then St ∼ Re for a velocity governed by
Eqs. (3) and (4), and St ∼ 1 for conventional turbulence.
An important quantity to watch is the net (volume-,

but not time-, averaged) helicity

H(t) = 〈u · (∇×u)〉xy = −2
∑

k0

k2(t)uzk0
(t)Φ∗

k0
(t). (7)

We can ensure that its statistical (or, equivalently,
time) average vanishes, 〈H(t)〉 = 0, by stipulating
〈

fzk0
(t)F ∗

k0
(t′)

〉

= 0. This removes the possibility of the
standard α-effect [2, 4].
Mean-Field Theory. The evolution equation for the

magnetic field B in the presence of linear shear is

∂tB+Sx∂yB+u ·∇B = B ·∇u+SBxey+η∇2B, (8)

where η is the magnetic diffusivity. Since the velocity
field is independent of z, we can separate the dependence
of B on z by expanding B =

∑

kz
B(kz) exp(ikzz). Only

the projection B⊥ onto the xy-plane needs to be calcu-
lated because Bz = (i/kz)∇ ·B⊥. For each kz , B

⊥ will
satisfy a closed equation with kz appearing as a param-
eter and no mode coupling in kz.
We now seek the solutions of Eq. (8) again

in the form of a superposition of shearing waves,

B⊥ =
∑

k0
B⊥

k0
(t) eik(t)·r, where the perpendicular wave

numbers k0 and k(t) are defined in the same way as in
the velocity decomposition [Eq. (2)]. B⊥

k0
satisfies

∂tB
⊥

k0
= SBxk0

ey − η
[

k2(t) + k2z
]

B⊥

k0

+
∑

k′

0

Φk′

0
[ez × k′(t)] · [k(t)̂I− Îk′(t)] ·B⊥

k0−k′

0

− ikz
∑

k′

0

uzk′

0
B⊥

k0−k′

0

, (9)

where Î is a unit dyadic. We take the large-scale mean
field to be the xy-average of the total magnetic field, i.e.
B̄ = B⊥

0 . The dynamical equation for the mean field is
given by the k0 = 0 component of Eq. (9):

∂tB̄ = SB̄xey − ηk2zB̄ − ikz
∑

k0

uzk0
B⊥

−k0

−
∑

k0

Φk0
[ez × k(t)]k(t) ·B⊥

−k0
(10)

(note that B̄z = 0 because ∇ · B̄ = ikzB̄z = 0).
We now calculate B⊥

−k0
in Eq. (10) in terms of B̄

via Eq. (9). This is particularly easy in the limit
Rm ≪ min(1, St, Sh−1), where Rm ∼ urmsℓf/η and
Sh ∼ Sℓf/urms. We also assume kzℓf ≪ 1, which will
be verified a posteriori for the fastest growing dynamo
mode. With these approximations, the dominant terms
in Eq. (9) are ηk2(t)B⊥

k0
and the k′

0 = k0 components of
the wavenumber sums, giving

B⊥

−k0
= −

ikzu
∗

zk0
B̄ +Φ∗

k0
[ez × k(t)]k(t) · B̄

ηk2(t)
. (11)

Substituting this into Eq. (10), we get

∂tB̄ = SB̄xey − [η + β(t)]k2zB̄ + ikzez × α̂(t) · B̄, (12)

where β(t) =
∑

k0
|uzk0

(t)|2/ηk2(t) ≪ η (negligible “tur-
bulent diffusivity” in the limit of low Rm) and

α̂(t) = 2
∑

k0

uzk0
(t)Φ∗

k0
(t)

ηk2(t)
k(t)k(t). (13)

Eq. (12) has the form of a standard mean-
field equation [2] with mean electromotive force
E = α̂ · B̄ − ikzβ ez × B̄, but it is of stochastic nature:
α̂(t) and β(t) fluctuate with the correlation time τc
of the velocity field. Note that 〈α̂(t)〉 = 0 because we
have constructed our velocity field in such a way that
〈uzk0

(t)Φ∗

k0
(t)〉 = 0 (cf. [8, 15, 19, 24]).

If we now average Eq. (12) over forcing realizations
and look for exponential growth of 〈B̄(t)〉, we will find
that, under the approximations we have made, no such
growth occurs to the lowest order in the standard cumu-
lant expansion [25] used to calculate 〈α̂(t) · B̄(t)〉 [26].
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While it is possible that the mean field grows at a higher
order in the expansion, the key question that needs to
be addressed at lowest order is, in fact, not necessar-
ily whether the statistical average of the large-scale field
B̄(t) exhibits exponential growth, but whether the mean
large-scale magnetic energy 〈|B̄(t)|2〉/2 does.
Large-Scale Energy. In order to address this last

question, we introduce the mean-field covariance vector

C = (B̄∗

xB̄x, B̄
∗

yB̄y,ℜB̄∗

xB̄y,ℑB̄∗

xB̄y), (14)

where ℜ and ℑ denote real and imaginary parts. The
evolution equation for C follows directly from Eq. (12):

(∂t + 2ηk2z)C = (Ŝ + kzÂ)·C, (15)

where we have introduced the matrices

Ŝ =

[

0 0 0 0
0 0 2S 0
S 0 0 0
0 0 0 0

]

and Â =

[

0 0 0 2αyy

0 0 0 2αxx

0 0 0 −2αxy

αxx αyy 2αxy 0

]

. (16)

In the following, we will use arabic numerals to refer to
the components of the vectors and matrices in Eq. (15).
We now average Eq. (15) with respect to forc-

ing realizations using the cumulant expansion [25]
to calculate 〈Â(t) ·C(t)〉. Since the Kubo number
Ku ∼ kzÂτc ∼ kzℓfRmSt ≪ 1, the expansion can be
truncated at the lowest order in Ku. The result is that
〈C(t)〉 satisfies, for t ≫ τc,

(∂t + 2ηk2z)〈C〉 = (Ŝ + k2zD̂) · 〈C〉, (17)

where the term originating from α̂ now has the form of
a (negative) tensor diffusivity

D̂ =

∫ ∞

0

dt′〈Â(t) · Â(t− t′)〉. (18)

We have also assumed Sτc ≪ 1, which allowed us to ne-
glect the matrix exponentials of Ŝt′ in Eq. (18).
We note that D̂ is block diagonal: its elements are

zero where those of Â are not, and vice versa. It follows
that 〈C4〉 = 〈ℑB̄∗

xB̄y〉 evolves independently of the other
components of 〈C〉:

∂t〈C4〉 = −k2z(2η −D44)〈C4〉. (19)

Since D44/η ∼ Rm3St ≪ 1 [27], we conclude that C4

always decays, which means that B̄x and B̄y asymptoti-
cally have the same complex phase.
With C4 = 0, we are left with a rank-three eigenvalue

problem. If we let 〈C〉 ∝ exp(2γt), the resulting disper-
sion relation will be a cubic equation in γ + ηk2z . This
equation can be solved perturbatively in the limit k2zD̂ ∼
k2zÂ

2τc ≪ S or, equivalently, (kzℓf)
2 Rm2 St Sh−1 ≪ 1.

In the end, this means that the only element of the tensor
D̂ that survives to give a non-negligible contribution is

D12 = 2

∫ ∞

0

dt′
〈

αyy(t)αyy(t− t′)
〉

, (20)

where t ≫ τc. Then γ satisfies

(γ + ηk2z)
3 − k2zS

2D12

4
= 0 (21)

and so, assuming that D12 > 0, the real root of this
equation gives the dynamo growth rate [28]

γ = −ηk2z +

(

k2zS
2D12

4

)1/3

. (22)

The vertical wave number and the growth rate of the
fastest growing mode are

kpkz =
|S|1/2√

2

(

D12

27η3

)1/4

∼ ℓ−1
f Sh1/2 St1/4 Rm5/4 (23)

(confirming kpkz ℓf ≪ 1) and

γmax =
|S|
3

(

D12

3η

)1/2

∼ urms

ℓf
Sh St1/2 Rm3/2. (24)

The structure of this mode is such that

〈|B̄x|2〉
〈|B̄y|2〉

=
D12

6η
∼ StRm3, (25)

which is independent of shear.
Discussion. The scalings derived above, viz.,

kpkz ∝ S1/2, γmax ∝ S, and the independence of
〈|B̄x|2〉/〈|B̄y|2〉 of S, are precisely the ones reported
in the numerical experiments [13, 14, 20]. One should
keep in mind that most of these simulations were not
done in the asymptotic regime Rm ≪ min

(

1, St, Sh−1
)

or at particularly small Sτc. The fact that the scalings
we have derived nevertheless appear to hold even for
parameter values at the boundary of the analytically
tractable regime might be interpreted as a testimony
to the robustness of the underlying physical effect [29].
Indeed, we note that Eq. (22) rigorously holds for any
“quasi-2D” velocity field superimposed on a uniform
shear flow with the only provisos that it has a well
defined characteristic length scale, a correlation time
much shorter than the inverse rate of shear, and the
property that 〈uzk0

Φ∗

k0
〉 = 0. Our theory shows that

such a velocity field is always capable of dynamo action
provided sufficiently large scales in the z-direction are
accessible to the mean field (i.e., provided the system is
large enough). A field of randomly forced shearing waves
at low Re, given by Eqs. (3) and (4), is a physically
realizable example of such a velocity field. For this field,
using Eqs. (5), (6), (13), (20), and Sτc ≪ 1, we get

D12 = 4
∑

k0

k4y

〈

|Φk0
(t)|2

〉〈

|uzk0
(t)|2

〉

νη2k6(t)
, (26)

which is positive, as assumed in Eq. (22).
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The key ingredient in the dynamo loop are fluctua-
tions in the α̂-tensor (13), which, in conjunction with
stretching of the mean field by the background shear
flow, provide a positive feedback [30]. This is evocative of
the dynamo models known as the “stochastic α-effect”,
which are based on introducing a fluctuating scalar αyy

[8, 19, 24] — this has usually been done based on ad hoc

non-rigorous models of how this α comes about. The
theory we have presented here is the first calculation of
this kind done from first principles.

Conclusion. We have presented a minimal analyti-
cally tractable model of the shear dynamo. The sim-
plicity of the model suggests that the effect is robust,
while its rigorous validity in the realizable limit of low
Rm, weak shear and for a velocity field consisting of ran-
domly forced shearing waves at low Re suggests that it is
physical and does not depend on ad hoc closure assump-
tions. Much remains to be understood before it can be
assessed whether the shear dynamo offers a panacea for
(non-helical) generation of large-scale magnetic fields in
astrophysical systems. A further effort in this direction
appears worthwhile in view of the great success enjoyed
by shear-induced dynamos in astrophysically motivated
numerical experiments and a basic similarity of the field
structure that they generate [13, 14, 20, 31]. A compan-
ion paper on the quasilinear elemental shear dynamo,
exploring broader parameter regimes, is [32]. A major
outstanding task is to understand how the shear dynamo
mechanism of generating large-scale fields coexists with
the fluctuation dynamo of small-scale fields, which will
inevitably be present at sufficiently large Rm [14] and,
therefore, in any real astrophysical situation (cf. [3]).
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