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Abstract

A model for incomplete reconnection in sawtooth crashes is presented. The reconnection inflow

during the crash phase of sawteeth self-consistently convects the high pressure core toward the

reconnection site, raising the pressure gradient there. Reconnection shuts off if the diamagnetic

drift speed at the reconnection site exceeds a threshold, which may explain incomplete reconnection.

The relaxation of magnetic shear after reconnection stops may explain the destabilization of ideal

interchange instabilities reported previously. Proof-of-principle two-fluid simulations confirm this

basic picture. Predictions of the model compare favorably to data from the Mega Ampere Spherical

Tokamak. Applications to transport modeling of sawteeth are discussed. The results should apply

across tokamaks, including ITER.
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Sawtooth crashes in tokamaks occur when the core temperature rapidly drops following

a slow rise [1]. Large sawteeth are deleterious for fusion because they spoil confinement,

while small sawteeth may be beneficial by limiting impurity accumulation [2]. Kadomtsev

suggested the cause is the m = 1, n = 1 tearing mode [3], where m and n are poloidal and

toroidal mode numbers. The predicted crash duration is the time it takes Sweet-Parker

reconnection to process all available magnetic flux. This agreed with early experiments and

simulations.

Soon after, cracks in the model appeared. Crash times in larger and hotter tokamaks

were much faster than Kadomtsev’s prediction [4, 5]. Also, Kadomtsev’s model assumes all

available magnetic flux reconnects (reconnection is “complete”), however experiments reveal

that reconnection is usually incomplete [6]. Equivalently, the safety factor q = rBϕ/R0Bθ

does not exceed 1 everywhere after a crash, where R0 and r are the major and minor radii

and Bϕ and Bθ are toroidal and poloidal magnetic fields.

Many models of incomplete reconnection exist, but there is no consensus on which, if any,

is correct. Examples include stochastic magnetic fields [7], diamagnetic and pressure effects

at the magnetic island [8–11], trapped high energy particles [12–14], a flattened q-profile

[15], and the presence of shear flow [16, 17].

The uncertainty of the cause of incomplete reconnection impacts tokamak transport mod-

eling. Low-dimensional transport models capture the sawtooth period and amplitude [18],

but the fraction of flux reconnected is an input parameter rather than self-consistently calcu-

lated. A self-consistent theory of incomplete reconnection would improve tokamak transport

models.

In this letter, we propose a model for incomplete reconnection in sawteeth due to the

self-consistent dynamics of magnetic reconnection, building on established properties of dia-

magnetic effects [19]. After describing the model, we present numerical simulations confirm-

ing its key aspects. Then, we show that the model is consistent with data from the Mega

Ampere Spherical Tokamak (MAST) [20]. Finally, applications and limitations of the result

are discussed.

To understand why reconnection in Kadomtsev’s model is complete, consider the m =

1, n = 1 reconnection plane sketched in Fig. 1. The reversed (auxiliary) magnetic field

B∗ is in red, the high pressure core is in grey, and the reconnection site is the black X.

When reconnection begins, outflow jets (in blue) are driven by tension in newly reconnected

field lines. Mass continuity induces plasma inflow from upstream (also in blue). This flow
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FIG. 1: (Color) Sketch of the m = 1, n = 1 reconnection plane. Reconnecting (auxiliary) magnetic

fields B∗ are in red with the rational surface rs indicated by the dotted red line. Plasma inflows

vin and outflows vout are in blue with the reconnection site at the black X. The grey core moves

from its initial position centered at the yellow X. The pressure gradient is the green arrow. The

helical guide field Bh and the diamagnetic drift velocities v∗i and v∗e are shown.

convects more magnetic flux (if available) towards the reconnection site, which reconnects.

Thus, reconnection is self-sustaining.

We argue that the key to explaining incomplete reconnection is the effect of reconnection

dynamics on the pressure gradient at the reconnection site. Suppose the core is initially

centered at the yellow X. The pressure gradient at the reconnection site (the green arrow)

is radially inward and relatively weak. As the reconnection inflow self-consistently convects

the core outward, the pressure gradient at the reconnection site increases. The outward

motion of the core has long been seen in observations [5].

In the presence of a strong out-of-plane (guide) magnetic field Bh, in-plane pressure

gradients lead to in-plane diamagnetic drifts, sketched in Fig. 1. Diamagnetic (ω∗) effects

are known to stabilize linear and nonlinear tearing [21, 22], which continues to be actively

studied [19, 23, 24]. It was shown [19] that reconnection does not occur if

|v∗i − v∗e|out > vout, (1)

where vout is the reconnection outflow speed, v∗α = −∇pα×B/(qαnαB
2) is the diamagnetic

drift velocity measured at the reconnection site for species α = i, e, and the “out” subscript

refers to the outflow direction.

3



We propose that the increase in v∗i and v∗e as the pressure gradient self-consistently

increases due to reconnection causes the left-hand side of Eq. (1) to increase. If Eq. (1) is

never satisfied, reconnection is complete. If the pressure gradient becomes large enough,

reconnection ceases. Since Eq. (1) can be satisfied even when free magnetic energy remains,

this provides a possible mechanism for incomplete reconnection. This model departs from

previous ones [8–10] as it concerns pressure gradients at the reconnection site rather than

the magnetic islands.

This model complements, and may explain key global features of, recent observations

at MAST [20]. They observe that |∇Te| increases during a sawtooth period, peaking at

the end of the crash (their Fig. 3), qualitatively consistent with the model. They also

show that secondary ideal-MHD instabilities are destabilized at the end of the crash cycle.

Reconnection would also play an important role in this process. When reconnection ceases,

the electron-scale current sheet broadens, reducing the magnetic shear in a region where

|∇p| is large. Decreased shear is known to destabilize interchange instabilities (e.g. [25]).

To test the model, proof-of-principle numerical simulations are performed using F3D

[26], a two-fluid code employing a two-dimensional slab geometry with periodic boundary

conditions. This geometry is appropriate because motion in the plane normal to the guide

magnetic field is well described in two dimensions, toroidal effects are not expected to play

a role on the short time scales in question (tens of µs), and three-dimensional toroidal

simulations employ unphysical forcing terms to obtain sawteeth [27]. These simulations do

not contain toroidal effects which lead to secondary ideal-MHD instabilities [20] because

this facet of the evolution is outside the scope of this study. Electron pressure is evolved

assuming an adiabatic ideal gas with a ratio of electron specific heats γe = 5/3. Since

the relative diamagnetic speed is the key parameter, ions are assumed cold for simplicity.

Magnetic fields and mass densities are normalized to arbitrary values B0 and ρ0, velocities

to the Alfvén speed cA0 = B0/(4πρ0)
1/2, lengths to the ion inertial length di0 = c/ωpi =

(m2

i c
2/4πρ0Z

2

eff
e2)1/2, times to the ion cyclotron time Ω−1

ci0 = (ZeffeB0/mic)
−1, electric fields

to E0 = cA0B0/c, and pressures to p0 = B2

0
/4π, where mi is the ion mass, c is the speed of

light, e is the proton charge, and Zeff is the effective atomic number.

The coordinate system has x parallel to the inflow (radial), y parallel to the outflow

(poloidal), and z in the out-of-plane (toroidal) direction, invariant in the present two-

dimensional simulations. The equilibrium has an in-plane magnetic field profile of a double
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Harris sheet,

By(x) = tanh

(

x− Lx/4

w0

)

− tanh

(

x+ Lx/4

w0

)

+ 1,

where Lx × Ly = 102.4 × 204.8 is the system size and w0 = 0.5 is the initial thickness of

the current sheet. For this equilibrium, the toroidal mode number n = 0 manifestly, so the

rational surfaces are xs = ±Lx/4 = ±25.6. We focus on a single mode because there is

typically a dominant mode in sawteeth; the n = 0 mode is chosen for simplicity, but is not

expected to alter the conclusions. The mass density is initially ρ = 1. The initial electron

pressure profile is

pe(x) =
1

2
(p1 + p2) +

1

2
(p1 − p2)×

[

tanh

(

x+ 3Lx/8

wp

)

− tanh

(

x− 3Lx/8

wp

)

− 1

]

.

The pressure gradient is localized near x = ±3Lx/8 = ±38.4 rather than at the rational

surfaces xs. Thus, pe at the reconnection site is initially uniform. The length scale of the

pressure gradient is wp = 2. The guide magnetic field Bz(x) has a mean value of 5 with a

profile that ensures initial pressure balance, p+B2/2 = constant.

The data we present are from simulations with a grid scale of ∆ = 0.05. A test simulation

with ∆ = 0.025 confirms the resolution is sufficient. The equations employ fourth-order

diffusion with coefficient D4 = 2 × 10−5 to damp noise at the grid scale; D4 has been

varied to ensure the key physics is not sensitive to it. The electron to ion mass ratio is

1/25. Simulations include no resistivity because experimental crash times are faster than

collisional reconnection times. The presented simulations do not employ a parallel thermal

conductivity, but test simulations with χ|| = 0.08 reveal no significant changes. Tearing is

initiated by a small coherent perturbation to the in-plane magnetic field of amplitude 0.01. It

is known that secondary islands can spontaneously arise in reconnection simulations; due to

symmetry, such islands would stay at the original X-line [28]. To prevent this, initial random

magnetic perturbations of magnitude 2.0 × 10−5 break symmetry so secondary islands are

ejected.

The principal simulation employs p1 = 5, p2 = 25 so v∗e will exceed vout when the high

pressure plasma convects in. Other simulation parameters are carefully chosen: Bz ≫ By as

is relevant to sawteeth and pe is large enough so the ion Larmor radius ρs = cs/Ωci exceeds

the electron skin depth de = c/ωpe, allowing fast reconnection to proceed [29, 30]. Here,

cs = (γeZeffTe/mi)
1/2 is the ion acoustic speed, and Te is the electron temperature.

Upon evolving the system, Hall reconnection occurs initially and the high pressure plasma
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FIG. 2: (Color online) (a) Reconnection rate E as a function of time t with and without a pressure

gradient. (b) Diamagnetic drift speed v∗e at the reconnection site and outflow speed vout vs. t.

convects towards the reconnection site as expected. The reconnection rate E, measured as

the time rate of change of magnetic flux between the X-line and O-line, is plotted as the solid

(red) line in Fig. 2(a). It increases from zero to its expected value near 0.1 [31] by t ∼ 90,

where it reaches a steady-state with a single X-line. (The variation between t = 40 and

90 is due to transient secondary island formation and coalescence.) At t ≃ 195, E begins

decreasing. It decreases to below zero, where it fluctuates for a number of Alfvén crossing

times. Thus, reconnection has shut off.

To determine the cause, the electron diamagnetic speed v∗e at the reconnection site is

plotted as a function of time in Fig. 2(b) as the dashed (black) line. For comparison, the

outflow speed vout is plotted as the solid (red) line. Asymmetric outflows occur when there

is a pressure gradient in the outflow direction [32], and since such gradients self-consistently

generate here, vout is calculated as the average of the maximum electron outflow speeds from

either side of the reconnection site, averaged over 5de when turbulent.

Figure 2(b) reveals that v∗e is small initially, but increases in time once the pressure

gradient reaches the reconnection site at t ≃ 140. It increases until it becomes comparable

to vout at t ≃ 195 (the vertical dashed line), the same time E begins to decrease. Therefore,

reconnection is throttled when Eq. (1) is first satisfied.

To ensure diamagnetic effects occur, the out-of-plane current density Jz near the X-line

is plotted in Fig. 3 (a) before (t = 125) and (b) after (t = 180) the pressure gradient arrives,

with in-plane magnetic field lines superimposed. The guide field is in the −z-direction and
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FIG. 3: (Color) Out-of-plane current density Jz zoomed in near the X-line with magnetic field

lines superimposed (a) before (t = 125), (b) after (t = 180), and (c) significantly after (t = 210)

the pressure gradient reaches the reconnection site. The x and y axes correspond to the radial and

poloidal directions, respectively.

∇pe is in the −x-direction. The reconnection site drifts in the −y-direction, the direction of

v∗e. Note, a secondary instability (recently speculated to be a drift instability [33]) appears.

The increased variability of v∗e and E after t ≃ 205 are attributed to this instability.

To ensure the observed effect is caused by the pressure gradient, simulations with other

pressure profiles are performed. When there is no gradient with p1 = p2 = 5, there is no

decrease in E, plotted as the dashed (blue) line in Fig. 2(a). The same is true for p1 = p2 = 25

(not plotted). When p1 = 5, p2 = 7, no drop in reconnection rate is observed because the

maximum v∗e only reaches ∼ 1, but vout ∼ 2 so Eq. (1) is never satisfied. In summary,

the simulations confirm the basic prediction of the model: reconnection ceases when large

enough pressure gradients self-consistently convect into the reconnection site despite the

presence of free magnetic energy.

Post-cessation features are important for the subsequent dynamics. Figure 3(c) shows

Jz significantly after the pressure gradient reaches the reconnection site (t = 210). The

current layer clearly broadens as reconnection stops, reducing the magnetic shear at the

reconnection site, as evidenced by the negative reconnection rate in Fig. 2(a). The reduced

shear would make the system more prone to interchange instabilities, which were argued to

occur in Ref. [20].
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Equation (1) provides a quantitative prediction of the conditions at the end of sawteeth;

we assess it with data from MAST [20]. To transform into the plane of reconnection perpen-

dicular to the m = 1, n = 1 helical direction, the reconnecting (auxiliary) field B∗ is related

to the toroidal Bϕ and poloidal Bθ fields by

B∗(r) = Bθ −
(

r

R0

)

Bϕ. (2)

At MAST, R0 = 0.85 m [34] while Bϕ ≃ 0.4 T and Bθ ≃ 0.15 T [35]. The rational surface rs

is where B∗ = 0 in Eq. (2), which gives rs ≃ 0.32 m. This result agrees well with Fig. 1(a)

of Ref. [20]. The helical guide field at rs is Bh = Bϕ(1 + rs/R0) ≃ 0.55 T.

To test the model, Eq. (1) must be evaluated at the end of the sawtooth crash. The

outflow speed scales with cAe, the electron Alfvén speed based on the field B∗e upstream

of the electron current layer. Assuming the large guide field limit with Bh ≫ B∗ in the

vicinity of rs, the thickness of the electron current layer scales as the electron Larmor

radius ρe = vth,e/Ωce [36], where vth,e = (γeTe/me)
1/2 is the electron thermal speed and

Ωce = eB/mec is the electron cyclotron frequency. Using Te ≃ 500 eV at rs [20] and

γe = 5/3, we find ρe ≃ 0.013 cm. To find B∗e, we evaluate Eq. (2) at rs ± 2ρe [37], which

gives B∗e ≃ 5.9×10−5 T, justifying the strong guide field assumption. Using this value gives

vout ≈ 14.2 km/s, where ne ≃ 6× 1019 m−3 is estimated from Fig. 2 in Ref. [20].

To estimate v∗e, note |∇pe|/ne = |∇Te|+ Te(|∇ne|/ne). The right-hand side is estimated

at the end of the crash from Figs. 1(e), 2 and 3 of Ref. [20] to be |∇pe|/ne ≃ 7400 eV/m.

Then, the electron diamagnetic speed is v∗e = |∇pe|/(qneBh) ≈ 13.5 km/s. Equation (1)

includes ion diamagnetic effects, but complementary ion data is unavailable [35]. Assuming

the ion temperature has a similar profile as the electrons with Te > Ti, we expect v∗e <

|v∗i|+ |v∗e| < 2v∗e. Thus, the two speeds agree rather well, showing the agreement with the

data is also quantitative.

As a further consistency check, we compare the speed of the core to the inflow speed.

The the core’s speed is estimated from Figs. 1(d-f) of Ref. [20] by dividing its displacement

(≃ 0.08 m) by the elapsed time (≃ 0.04 ms), giving a speed of ∼ 2 km/s. The reconnection

inflow speed scales like 0.1cAi [26], where cAi is the ion Alfvén speed based on the field B∗i

upstream of the ion current layer. The ion layer thickness with a large guide field scales like

the ion Larmor radius ρs [21]. Using Zeff ∼ 1 [38] and mi = 2mp for a deuterium plasma

[34], we find ρs ∼ 0.77 cm. As in the calculation of B∗e, we evaluate Eq. (2) at rs ± 2ρs,

giving B∗i = 6.7 × 10−3 T. Then, cAi ≈ 13 km/s, so the inflow speed is ≃ 1.3 km/s. Thus,

the inflow speed is comparable to the speed of the core, as predicted.
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For tokamak applications, Eq. (1) may be recast in terms of more familiar quantities.

Assuming vout ∼ cAe in Eq. (1) and rewriting Eq. (2) in terms of q and expanding to lowest

order in r for a small displacement (2ρe) from rs, B∗e ≃ Bθq
′2ρe, where the prime denotes

a radial derivative. Thus, Eq. (1) becomes

1

eBh

∣

∣

∣

∣

p′i
Zeffni

+
p′e
ne

∣

∣

∣

∣

>
2ρeBθ√
4πmene

q′, (3)

where all quantities are evaluated at rs. This expression is reminiscent of the condition on

p′ and q′ for suppression of sawteeth derived from linear tearing theory [21, 39].

In conclusion, we have described a model for incomplete reconnection in sawtooth crashes,

tested the basic physics with numerical simulations, and shown it is consistent with data

from MAST. Interestingly, recent simulations of sawteeth revealed complete reconnection

in MHD, but incomplete reconnection in extended-MHD with electron and ion diamagnetic

effects [27, 40]; the present result may be relevant. Equation (1) may be useful for low-

dimensional transport modeling, which currently use ad hoc models to achieve incomplete

reconnection [41]. The present results are machine independent, so they should apply both

to existing tokamaks and future ones such as ITER.

In future studies, the model should be tested with other extended-MHD effects such as

ion diamagnetic effects and higher χ||. The restriction on toroidal mode number n should

be relaxed. The effect of the electron pressure profile on the dynamics and the secondary

(drift) instability should be addressed; this may need to utilize particle-in-cell simulations.

Including 3D toroidal geometry is critical for exploring secondary ideal-MHD instabilities.

Comparisons to multiple tokamak discharges should be done to test the scaling.
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