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We describe two quantum channels that individually cannot send any classical information without
some chance of decoding error. But together a single use of each channel can send quantum information
perfectly reliably. This proves that the zero-error classical capacity exhibits superactivation, the
extreme form of the superadditivity phenomenon in which entangled inputs allow communication
over zero capacity channels. But our result is stronger still, as it even allows zero-error quantum
communication when the two channels are combined. Thus our result shows a new remarkable way
in which entanglement across two systems can be used to resist noise, in this case perfectly. We also
show a new form of superactivation by entanglement shared between sender and receiver.

Sending information over a noisy communication chan-
nel usually requires error correction. The best transmis-
sion rate possible, optimized over all conceivable error-
correction strategies, is called the capacity of the channel.
The capacity tells us the value of a noisy channel for
communication and is measured in bits per channel use.
Capacities are central to the theory of information ini-
tiated by Shannon [1], and serve as guideposts for the
development of practical communication schemes.

Information theory usually considers the asymptotic
regime, allowing arbitrarily many uses of a fixed noisy
channel. The probability of transmission error is required
to vanish in the limit of many channel uses, and the
resulting capacity is called the Shannon capacity. A
more demanding requirement is to ask for exactly zero
error probability. This leads to zero-error information
theory, which has a more combinatorial flavor [2]; indeed,
much of modern graph theory owes its origins to zero-
error communication [3]. This setting is most relevant
when the asymptotic guarantees of Shannon theory are
insufficient—either because the number of channel uses
isn’t large enough to achieve small error probability, or
because absolutely no error can be tolerated. Furthermore,
it is related to the rate at which the error probability tends
to zero in the usual Shannon capacity [4].

Ultimately, noisy communication links are described by
quantum mechanics, and in systems such as optical com-
munication, quantum effects cannot be neglected. When
considering the zero-error capacity of quantum channels,
we may consider either the classical or quantum capaci-
ties, measuring respectively the rate at which a channel
may send bits or qubits without any error. The resulting
coding problems lead to rich generalizations of the graph
theory problems arising from classical channels [5].

Even classically, the zero-error capacity is quite dif-
ferent from the Shannon capacity. For example, it is
non-additive [2]. However, some basic properties are com-
mon to both capacities. One of the most basic is the
behavior of zero-capacity channels, i.e. channels that are

too noisy to transmit any information. It seems like com-
bining two such completely useless channels will still not
allow communication. Indeed, for classical channels, this
intuition is correct. The only classical channels with no
zero-error capacity are those where every pair of inputs
have some non-zero probability of being confused at the
output (otherwise we could use a non-confusable pair of
inputs to send one bit). But if we use two such channels
together, any pair of inputs to the combined channel can
also be confused, so the joint channel has zero capacity.

Remarkably, we show that this elementary property of
classical channels fails for quantum channels: there are
pairs of quantum channels, each with no classical zero-
error capacity at all, yet which do allow perfect classical
transmission when the two channels are combined. This
striking “0+0¿0” phenomenon is known as superactiva-
tion [6] and is an extreme case of superadditivity. To
our knowledge this is the first superactivation of a classi-
cal capacity of standard quantum channels. In fact, we
can strengthen this result to show that the joint channel
can even transmit far more delicate quantum information
with zero error, so these channels superactivate both the
classical and quantum zero-error capacity simultaneously.

It is a bit like having two pipes, both completely blocked,
allowing nothing to flow through them. Yet, by plumbing
the blocked pipes in parallel, water can flow. Of course,
the analogy breaks down due to quantum effects. Indeed,
entanglement is at the heart of this remarkable superacti-
vation phenomenon. Our results show that using input
states entangled across the two inputs to the joint channel,
we can completely defeat noise, allowing perfect transmis-
sion where none was otherwise possible. Finally, we show
that entanglement can completely defeat noise in a new
form of superactivation: superactivation by entanglement,
where entanglement between sender and receiver allows
perfect communication with a zero-capacity channel.

Related phenomena. Superactivation has previously
been found only for the quantum capacity of quantum
channels [7]. By contrast, the classical capacity is nonzero
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for any nontrivial quantum channel, so superactivation
is trivially impossible in the standard Shannon setting.
There, the possibility of superadditivity (two channels hav-
ing greater asymptotic capacity when combined) remains
a major open question, since the additivity violation of
Hasting [8] only addressed one-shot (Holevo) capacities.
Private communication is intermediate between classi-
cal and quantum communication. Here, superadditivity
has been observed [9], while superactivation remains an
open question. In the zero-error case, other researchers
have found activation results for single copies of quantum
channels [10]. It has also been shown that the zero-error
capacity even of classical channels can be increased by
shared entanglement between sender and receiver, though
it cannot be superactivated [11]. Recently, others have
started to explore how quantum zero-error capacities re-
late to the graph-theoretic quantities that provide bounds
on zero-error capacities of classical channels [5].

Overview of technical contributions. We use two key
technical ideas. The first is to choose our channels as
randomly as possible, subject to certain constraints. The
constraints guarantee that combining the two channels
allows information to be transmitted. Meanwhile, the
random choice helps ensure that the individual chan-
nels are noisy, so transmit very little information. This
constrained-randomness strategy has had many applica-
tions in quantum information. Examples include [12],
which considered random states subject to a rank con-
straint; [8, 13], which chose random channels subject to a
constraint ensuring their product gave one large output
eigenvalue; or the variant in [14], which choose random
channels subject to a constraint that guaranteeing a sin-
gular output for an appropriate entangled input.

This strategy is very successful in showing that there
is a nonzero probability of picking a channel that is noisy
enough on a single copy. This is sufficient for all the
above results, as they only concern “one-shot” quantities:
properties of a single copy of a channel. But we need
something stronger; we require arbitrarily many copies of
the same channel to be so noisy that it has no zero-error
capacity (even asymptotically). We only get to exploit a
finite amount of randomness (in the choice of one copy of
the channel), yet we want this finite amount of randomness
to control a property of an arbitrarily large and highly
correlated object (the capacity of arbitrarily many copies
of that same channel). However large the probability of
picking a suitable channel for a single copy, unless that
probability is 1 it will shrink to zero on a growing number
of copies. So, on its own, this strategy fails to give results
for asymptotic quantities such as channel capacities.

Our second tool is a new method to control the be-
havior of an unbounded number of copies of the channel
through randomness on a single copy using algebraic ge-
ometry. Such arguments show that certain bad sets (say,
the set of channels for which k copies can send a classical
bit with zero error) have zero measure, so that even a

union of countably many of them does as well. In other
words, we show that the probability of picking a suitable
constrained random channel is exactly 1, avoiding any
decay in the probability for growing numbers of copies.
These techniques rely on a greater knowledge of the struc-
ture of the problem, but are still highly general, and they
should have further application in quantum information,
including problems in which small errors are tolerated.
Proof of main result. We now describe the proof of

zero-error superactivation. Recall that two quantum
states ρ, σ are perfectly distinguishable exactly when they
are orthogonal (Tr[ρσ] = 0). Thus, the classical zero-error
capacity of a channel E is 0 exactly when no pair of inputs
gives orthogonal outputs. Mathematically, we require

∀ψ,ϕ Tr[E(ϕ)E(ψ)] 6= 0. (1)

Let ◦ denote composition, define E∗ by TrAE(B) =
Tr E∗(A)B and N := E∗ ◦ E . Then Eq. (1) is equiva-
lent to requiring ∀ψ,ϕ Tr[ϕN (ψ)] 6= 0. This in turn is
equivalent to insisting that the (CP, but not necessarily
trace preserving) mapN always has full rank output. This
condition was previously used in [14] to find multiplica-
tivity violations for the minimum output rank. Following
[14], we can rewrite this condition in terms of the Choi
matrix[15] ΓAB of the composite map N = E∗ ◦ E (recall-
ing that the action of the map can be recovered from the
Choi matrix via N (ρ) = TrA[ΓAB · (ρT ⊗ 1)]), to obtain
Tr[ΓAB · (ψ ⊗ ϕ)] 6= 0. In other words, the support of
ΓAB (denoted VAB) contains no product states.[16] The
same argument holds for any number of copies k of the
channel. So, for a channel to have no zero-error capacity
even asymptotically, V ⊗kAB must contain no product states
for any tensor power k (unlike [14], where k = 1 sufficed).

Furthermore, in contrast to [14], it is no longer true
that any bipartite subspace SAB will suffice; the fact that
the subspace must now support the Choi matrix of a com-
posite map N = E∗ ◦ E imposes extra symmetry require-
ments on VAB. It is easy to verify that VAB must have
the following additional properties: (i) F(VAB) = VAB,
where F(

∑
ij αij |i〉 |j〉) = α∗ij |j〉 |i〉 swaps the two systems

and takes complex conjugates, (ii) VAB contains a state
|ψ〉AB =

∑
i,j αij |i〉A |j〉B whose matrix of coefficients

M = [αij ] is positive-definite (has strictly positive eigen-
values). These two conditions are also sufficient, in the
following sense: given a subspace VAB satisfying (i) and
(ii), one can always construct a Choi matrix ΓAB sup-
ported on VAB which corresponds to some mapN = E∗◦E .
To see this, choose a (not necessarily orthonormal) basis
|ψk〉 for VAB whose coefficient matrices Mk are positive-
definite (condition (ii) guarantees that such a basis exists).
Denoting the eigenvectors of Mk by |φki 〉, the matrix

ρAB =
∑
ijk

|φki 〉A |k, i〉B 〈φ
k
j |A 〈k, j|B . (2)

is (up to rescaling) a Choi matrix for a channel E , such
that the Choi matrix of N = E∗ ◦ E is supported on VAB .
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For superactivation, we need a pair of channels E1 and
E2, each satisfying Eq. (1) so that it has no zero-error
capacity, but where the joint channel E1 ⊗ E2 does have
capacity. For this, we need a pair of input states that are
mapped to orthogonal outputs by the joint channel, i.e.

∃ψ,ϕ Tr[(E1 ⊗ E2)(ψ) · (E1 ⊗ E2)(ϕ)] = 0, (3)

as we can use these states to perfectly transmit 1 bit.
Generalising [14], we choose these inputs ψ,ϕ to be
maximally entangled states |ω〉 =

∑
i |i〉 |i〉/

√
d and

|ω′〉 = (X ⊗ 1) |ω〉, where X is the unitary consist-
ing of 1’s down the anti-main diagonal (i.e. one pos-
sible generalization of the Pauli matrix σx). Rewrit-
ing Eq. (3) in terms of the Choi matrices Γ1,2 of the
composite maps N1,2 = E∗1,2 ◦ E1,2, we obtain for this
choice of input states that the Choi matrices must satisfy
Tr[ΓT

1 ·(X⊗1)Γ2(X⊗1)] = 0. But, denoting the supports
of Γ1,2 by V1,2, this simply states that the subspaces V1
and (X ⊗ 1)V2 should be orthogonal. We might as well
take V2 = (X ⊗ 1)V ⊥1 , since this still allows zero-error
communication with the composite channel, while mak-
ing V2 as large as possible can only help suppress the
single-use capacity.

Our task now reduces to finding an appropriate V1,
which we call simply V from now on. To summarize the
constraints described above, we require:

(i) (V ⊗k)⊥ contains no product states for any k;

(ii) ((V ⊥)⊗k)⊥ contains no product states for any k;

(iii) F(V ) = V ;

(iv) F((X ⊗ 1) · V ) = (X ⊗ 1) · V ;

(v) V contains a state with positive-definite coefficient
matrix;

(vi) (X ⊗ 1) · V contains a state with positive-definite
coefficient matrix.

Properties (iii)–(vi) guarantee that V1 = V and V2 =
(X⊗1)V ⊥ correspond to valid channels. Our choice of V2
ensures that these channels together can communicate one
bit without error. Most of the remaining work is showing
that a random V satisfies (i)–(ii): arbitrary tensor powers
contain no product states, ensuring that the individual
channels have no zero-error capacity. (In stating property
(ii), we have used the fact that the set of product states is
left invariant by (X⊗1).) A priori, this appears extremely
demanding, since we must satisfy an infinite number of
constraints simultaneously; indeed, we only get to choose
a subspace from a constant number of dimensions, but we
need to rule out product states on an unbounded number
of tensor copies. However, algebraic geometry arguments
will show, remarkably, almost all subspaces (all but a
measure-zero set) satisfy properties (i)–(ii).

There is a standard way to represent a subspace as
a vector [17], writing V as the antisymmetric product
of an orthonormal basis of V (e.g. consider the unique
state of dimV fermions with state space V ). With
this parameterization, we can see that the set Ek of all
subspaces whose kth tensor power contains a product state
is given by a set of simultaneous homogenous polynomial
equations [18]. We don’t want these subspaces; we are
looking for a subspace that is not in any Ek. In general,
the set of zeros of a set of polynomials will either have
measure 0, or will comprise the entire space (Fig. 1) [19].

(a) (b)

FIG. 1: The set of zeros of a set of simultaneous
polynomial equations either (a) comprises the entire
space, or (b) has measure 0. To show that it is
measure 0, it therefore suffices to find a single point
outside of the set (b).

Therefore, to show that Ek has zero measure, it’s
enough to find a single point outside of it, thereby ruling
out the possibility that it is the entire space. To do this we
construct such a subspace from an unextendible product
basis (UPB): a basis on a bipartite space which cannot
be extended by adding any further orthogonal product
states. Now, the orthogonal complement of the span of a
UPB is by definition a subspace with no product states
and, since the tensor product of two UPBs is again a
UPB [18], this is also true for any tensor power of this
subspace, as required. This subspace will certainly not
satisfy the other requirements (ii)–(vi) (in particular, its
orthogonal complement is just the span of the UPB, which
clearly does contain product states, dramatically failing
to satisfy (ii)). But its existence shows that there is a
subspace that is not contained in any Ek, which collapses
each Ek to zero measure (Fig. 1). Thus ∪k≥1Ek has zero
measure, so property (i) holds for a random V with prob-
ability 1. Since V ⊥ is also uniformly random, property
(ii) automatically holds with probability 1 as well.

Our argument must be refined to handle (iii–vi). Start
with (iii) and (iv), which are linear constraints on the
subspace, and thus translate into polynomial constraints
in the coordinates parameterising the subspace. Since the
intersection of the solutions to two sets of simultaneous
polynomial equations is the set defined by the union of
both sets of polynomials, we can use the preceding argu-
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ment within this intersection. The only modification is
that we now choose a UPB that satisfies the symmetry
requirements. This is achieved by symmetrizing an arbi-
trary UPB. Since adding additional product states to a
UPB maintains the UPB property, this requires only that
the initial UPB is not too large, which holds already for
the UPBs from [20]. Therefore, we can choose a random
subspace satisfying requirements (iii) and (iv) and with
probability 1 it will also satisfy requirements (i) and (ii).

We now address (v) and (vi). These are not algebraic, so
we cannot repeat the algebraic geometry argument. How-
ever, the requirement that our subspace contain a state
with strictly positive-definite coefficient matrix is quite
mild. Specifically, if a subspace has this property and we
perturb it by a sufficiently small amount, the positive-
definite element stays positive definite. So, around every
such subspace there is an open ball of subspaces that also
satisfy the positivity requirement. This argument works
simultaneously for V and (X ⊗ I) · V . So, the set of sub-
spaces satisfying (v) and (vi) has positive measure, even
relative to the set of subspaces satisfying (iii) and (iv).
We’ve seen that the set of subspaces satisfying (i) and
(ii) is full measure within the set of subspaces satisfying
(iii) and (iv). The intersection of a positive-measure set
with a full-measure set has positive measure, so the set
of subspaces satisfying (i) to (vi) has positive measure.
So, at least one such subspace V must exist. This is
equivalent to the existence of channels superactivating
the classical zero-error capacity, so we are done.

Armed with these techniques, we can extend our result
to show the joint channel can even transmit quantum
information with zero error [21]. Thus, we want the joint
channel to transmit at least one qubit perfectly, mean-
ing that some two-dimensional subspace is transmitted
undisturbed. For this, it is sufficient [21] to find two
different pairs of orthogonal input states in the same
two-dimensional subspace are mapped to orthogonal out-
put states. This just adds another algebraic symmetry
condition on V , so we can deal with it exactly as before.

Entanglement-assisted capacity. We have shown that
by encoding the information into states |ω〉 and (X⊗1) |ω〉
which are entangled across the two inputs to the joint
channel, we can completely defeat the noise in the channel,
even though we couldn’t send any information through
either channel on its own. Entanglement can be used
to completely defeat noise in another way, by sharing
the entanglement between sender and receiver. To see
this, note that we have a channel E1 above with no zero-
error capacity, even asymptotically, but for which inputs
|ψ〉= |ω〉, |ϕ〉= (X ⊗ 1) |ω〉 to the joint channel E1 ⊗ E2
give orthogonal outputs: Tr[E1 ⊗ E2(ψ) · E1 ⊗ E2(ϕ)] = 0
(Eq. (3)). But applying a channel cannot decrease the
fidelity of two states, so E1 ⊗ I(ψ) and E1 ⊗ I(ϕ) are
orthogonal. So, if the sender and receiver share the maxi-
mally entangled state |ω〉, the sender can communicate

one bit perfectly to the receiver, by either sending her
half of the entangled state directly through the channel,
or first applying the local unitary X before sending it.
Since the resulting states E1 ⊗ I(ψ) and E1 ⊗ I(ϕ) are
orthogonal, they can be perfectly distinguished by the
receiver, thereby transmitting one bit with zero error.
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