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Spin-selective tunneling of holes in SiGe nanocrystals contacted by normal-metal leads is reported.
The spin selectivity arises from an interplay of the orbital effect of the magnetic field with the strong
spin-orbit interaction present in the valence band of the semiconductor. We demonstrate both
experimentally and theoretically that spin-selective tunneling in semiconductor nanostructures can
be achieved without the use of ferromagnetic contacts. The reported effect, which relies on mixing
the light and heavy holes, should be observable in a broad class of quantum-dot systems formed in
semiconductors with a degenerate valence band.

The spin-orbit interaction (SOI) has become of central
interest in the past years [1], because it enables an all-
electrical manipulation of the spin. In the field of spin
qubits, one of us [2] suggested the electrical control of
localized spins by means of the electric-dipole spin res-
onance, and this scheme has been successfully used for
spin rotations of electrons in quantum dots (QDs) [3, 4].
Already much earlier, Datta and Das [5] proposed a semi-
conductor transistor that would operate through a gate-
controlled spin precession, mediated by the SOI. In this
type of spin transistor, spin-polarized electrons are in-
jected into the semiconductor from a ferromagnetic (FM)
contact. The realization of an efficient spin injection has
proven to be a difficult task [6, 7]. Only recently, high
spin-injection efficiencies were reported for FM contacts
to semiconductors [8–10]. In nanostructures, however,
experimental evidence of spin injection is not as strong
and clear [11–15]. Here we show that the SOI in the va-
lence band, quantified by the spin-orbital splitting ∆SO,
provides an alternative way to obtain spin-selective tun-
neling without requiring FM electrodes.

At cryogenic temperatures, transport through QDs is
dominated by the Coulomb blockade (CB) effect. In the
CB regime, single-hole transport is suppressed and elec-
trical conduction is due to second-order cotunneling (CT)
processes [16]. We consider here the case of a QD with
an odd number of holes and a spin-doublet ground state.
A magnetic field, B, lifts the spin degeneracy by the
Zeeman energy EZ = gµBB, where g and µB are the
hole g-factor and Bohr magneton, respectively. Once the
bias voltage across the QD exceeds the Zeeman energy,
|eV | > EZ , the inelastic CT processes can flip the QD
spin, leaving the QD in the excited spin state; hereinafter
e is the elementary charge (e > 0). The onset of spin-flip
inelastic CT manifests itself as a step in the differential
conductance, G = dI/dV , at eV = ±EZ [17].Our mea-
surements reveal a pronounced asymmetry in the step
height of G with respect to the polarity of V . The asym-
metry is found to depend on the magnitude and direction
of B.
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FIG. 1. (color online) Spin-selective tunneling in (a) a QD
coupled to FM leads and (b) a QD with SOI coupled to non-
magnetic leads. Upon applying a forward (backward) bias,
|eV | ≥ EZ , the cotunneling processes indicated by the solid
(dashed) arrows become allowed. In both (a) and (b), the
tunnel rate, Γ ≡ πν |t|2, differs for each Zeeman sublevel of
the QD. In (a), it is the density of states ν that brings about
the spin selectivity of the tunneling. In (b), the spin selectiv-
ity is caused by the tunneling amplitude t, which depends on
the spinor wave functions at the point of tunneling. In the
valence band, the B-field efficiently makes Γ spin-dependent
by affecting the mixing between heavy and light holes. Since
the inelastic CT current is proportional to ΓL

⇑Γ
R
⇓ for the for-

ward bias and to ΓR
⇑Γ

L
⇓ for the reverse bias, an asymmetric

G(V ) is expected whenever ΓL
⇑Γ

R
⇓ 6= ΓR

⇑Γ
L
⇓ .

Such kind of asymmetry has been recently predicted
by Paaske et al., in a model with a rather generic form of
the SOI interaction [18]. In order to understand the ob-
served dependence of the asymmetry on the direction and
magnitude of the magnetic field we developed a theory
specific for the degenerate valence band of a semiconduc-
tor with large ∆SO.

It is interesting to note that the transport characteris-
tics of a QD with SOI coupled to normal leads are similar
to those of a QD without SOI coupled to FM leads. We
illustrate this similarity in Fig. 1, where we consider the
simplest case, in which the Zeeman interaction and the
two spin-selective tunnel contacts have collinear quanti-
zation directions.

We have studied the low-temperature magneto-
transport properties of individual SiGe self-assembled
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FIG. 2. (color online) (a) Schematic of a QD device fabricated
from a SiGe self-assembled nanocrystal grown on a silicon-on-
insulator substrate having a heavily doped handle wafer which
is used as a back gate [19]. (b) Qualitative band diagram of
a Ge-rich SiGe quantum well illustrating the effect of quan-
tum confinement along the growth (z) direction: HH and LH
branches are split at kx = ky = 0 and anti-cross at finite kx or
ky. In our system, the splitting energy ∆z ∼ γ2/mw2 is much
smaller than the spin-orbital energy ∆SO. The red (blue) dots
indicate that many other HH (LH) subbands exist before the
first LH (split off) subband is encountered. (c) G(V ) for dif-
ferent perpendicular B-fields from 0.5 to 3T. The traces have
been shifted by 0.06×2e2/h for clarity. Inset: G(VG, V ) for a
75-mT perpendicular field needed to suppress the supercon-
ductivity of the Al electrodes. (VG spans a range of 850mV
and V ranges from -3.5 to 3.5 mV). (d) G(V ) for different
parallel fields from 1 to 8T. The traces have been shifted by
0.06 × 2e2/h for clarity. The Zeeman splitting of the Kondo
peak is asymmetric in (c) and symmetric in (d). (e) Angu-
lar dependence of the split Kondo peak for a fixed VG and
B = 3T. Superimposed G(V ) traces for θ = 0, 30, 60, and
90 degrees. The V-shape dip of G at zero bias observed in
(c)-(e) is caused by electron-electron interaction in disordered
leads [20, 21].

QDs with a base diameter d ≈ 80 nm and a height w ≈ 20
nm. A schematic of a typical QD contacted with Al elec-
trodes is shown in Fig. 2(a). For such QDs, the hole
wave function is generally composed of both heavy holes
(HHs) and light holes (LHs). Due to the confinement and
compressive strain, the degeneracy between the HH and
LH branches, present in bulk at the Γ-point, is lifted. In
Fig. 2(b), we illustrate the interaction between a HH and
a LH branch in the two-dimensional (2D) case. The split-

œ (º)θ

0 30 60 90 120 150 180

0

0.1

0.2

A

(a)

0

A

0.2

0.1

B (T)Z

0 1 2 3

B +B = 3T
2 2

//Z

B = 0//

(b)

V (mV)

G
 (

2
e

/h
)

V
(m

V
)

B (T)

2

FIG. 3. (color online) Asymmetry parameter A as a function
of (a) θ and (b) perpendicular B. We note that, by subtract-
ing the elastic CT contribution from G(V ), A becomes larger
than 0.5. The top inset in (b) shows the evolution of the
Kondo peak while sweeping Bz from −1 to 1T. The lower
insert shows two characteristic line traces taken at −1T (red)
and 1T (black) demonstrating that A(Bz) = A(−Bz).

off band is far away in energy due to a large ∆SO. HHs
and LHs are states of angular momentum 3

2
with pro-

jections ± 3
2
and ± 1

2
, respectively. In the QD, the states

consist of a mixture of HH and LH wave functions. In
spite of a predominant HH character, symmetry consid-
erations on the constituent Bloch functions imply that,
for a realistic device geometry, tunneling to and from the
QD states takes place via the LH wave functions. Since
LHs cannot be factorized into orbital and spin compo-
nents, an applied magnetic field induces a spatial vari-
ation in the relative orbital “weights” of the two spins.
Therefore, the ratio of tunneling amplitudes for “up” and
“down” spins will depend on the position of the contacts.
In a 2D geometry, this effect should be highly anisotropic
since only a perpendicular field has an effect on orbital
motion.

The measurements have been performed in a dilution
refrigerator with a base temperature of 15mK. The sta-
bility diagram, G(VG, V ), of a QD device is shown in
the inset of Fig. 2(c). This device has a charging en-
ergy of about 1− 2meV and the orbital level separation
is some hundreds of µeV. The diamond-shape region de-
limited by dashed lines highlights the CB regime for an
odd number of confined holes. While G is generally sup-
pressed within this CB diamond, a G resonance can be
identified at V = 0, providing a clear signature of the
Kondo effect [22, 23]. At finite B, this resonance is split
by the Zeeman effect as shown in Figs. 2 (c) and (d) for
perpendicular and parallel B, respectively.

For perpendicular B [Fig. 2(c)], the splitting of the
Kondo peak is clearly asymmetric with respect to a sign
change in V . The asymmetry in G arises at the onset of
spin-flip inelastic CT (i.e. for |eV | > EZ). For parallelB,
however, the asymmetry is practically absent [Fig. 2(d)].
To further investigate this anisotropy, a sequence ofG(V )
traces was taken while rotating a 3T field in a plane per-
pendicular to the substrate. The resulting data, G(θ, V ),
are shown in Fig. 2(e), with θ being the angle between
B and the substrate plane. Along with a variation in
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the Zeeman splitting of the Kondo peak, caused by the
θ-dependent hole g-factor [19], the asymmetry becomes
progressively more pronounced when going from θ = 0
(or 180◦) towards θ = 90◦.
The asymmetry observed in G(V ) can be quantified

by A = G−−G+

G−+G+
, where G± = G(±EZ/e). The detailed

A(θ) dependence, extracted from Fig. 2(e), is shown in
Fig. 3(a). A ≈ 0 for θ = 0 (or 180◦) and it increases
monotonically up to 0.2 for θ approaching 90◦; the A(B)
dependence is shown in Fig. 3(b). By sweeping the mag-
netic field from negative to positive values [see insets in
Fig. 3 (b)], we further observe that the asymmetry A
obeys the relation

A(Bz) = A(−Bz). (1)

The same qualitative behavior described above was ob-
served in a second device, which did not display Kondo
effect, see Supplementary Material. The asymmetry A
reaches 0.4 at 3T for that device. We remark that, al-
though the first device shows larger conductance due to
the Kondo effect, the asymmetry A in both devices is a
consequence of spin-dependent tunnel rates [25].
In order to understand the microscopic origin of the

measured effect, we represent the Luttinger Hamilto-
nian [24] as a block matrix in the basis of HH (h) and
LH (l) states,

H =

(

Hhh Hhl

Hlh Hll

)

. (2)

InHhh andHll, we discard all terms that vanish in the 2D
limit (w/d → 0), whereas in Hhl and Hlh, we keep only
the leading-order terms. A systematic expansion around
the 2D limit is outlined in the Supplementary Material.
The blocks Hhh and Hll assume a familiar form

Hhh/ll =
γ1 ± γ2
2m

(

k2x + k2y
)

+
γ1 ∓ 2γ2

2m
k2z

+
1

2
µBσ · gh/l ·B + U(x, y) + Vh/l(z), (3)

where the axes x, y, and z point along the main crystal-
lographic directions, with z ≡ [001] being the direction of
the strongest quantization. After the expansion around
the 2D limit, the kinetic momentum operators kx and ky
contain only the component Bz, whereas kz is indepen-
dent of B. In Eq. (3) and below, γ1, γ2, γ3, κ, and q
denote the Luttinger parameters [24] and m denotes the
bare electron mass. The Pauli matrices σ = (σx, σy, σz)
represent the remaining pseudo-spin degree of freedom
in each block. We choose the following pseudo-spin ba-
sis [26]:

|↑〉h = |3/2,−3/2〉 , |↓〉h = |3/2,+3/2〉 ,
|↑〉l = |3/2,+1/2〉 , |↓〉l = |3/2,−1/2〉 . (4)

In the (x, y, z)-frame, the tensors of the g-factor are di-
agonal: gh = diag (0, 0,−6κ) and gl = diag (4κ, 4κ, 2κ),

where we neglected, for simplicity, the terms proportional
to the smallest Luttinger parameter q. The minus sign
in (gh)zz is due to our basis choice in Eq. (4). In Eq. (3),
we included an in-plane confining potential U(x, y). The
motion along z is confined to an infinitely-deep square
well, with different offsets, Vh and Vl > Vh, due to strain.
The blocks Hhl and Hlh are given by

Hhl = (Hlh)
†
= i

√
3γ3
m

(kxσy + kyσx) kz . (5)

These blocks intermix HHs and LHs, such that the wave
function of the hole in a given QD state assumes the
general form Ψ = αΨh + βΨl. In terms of the true-spin
states, such a wave function consists of a superposition of
the spin-up (↑) and spin-down (↓) states entangled with
the orbital degrees of freedom:

Ψ⇑(r) = Φ1(r) ↑ +χ1(r) ↓,
Ψ⇓(r) = χ2(r) ↑ +Φ2(r) ↓, (6)

where ⇑ and ⇓ denote the components of the Kramers
doublet in the QD. Focusing on the first HH subband,
we obtain by perturbation theory:

Φ1(r) =

√
2γ3
m

U−k−ψh(x, y)
∑

n

f l
n(z)

〈

f l
n

∣

∣ kz
∣

∣fh
1

〉

Eh
1 − El

n

,

χ1(r) = U−ψh(x, y)f
h
1 (z) +

2γ3
m
Zk−ψh(x, y)

×
∑

n

f l
n(z)

〈

f l
n

∣

∣ kz
∣

∣fh
1

〉

Eh
1 − El

n

, (7)

and similar expressions for Φ2(r) and χ2(r), obtained
from Eq. (7) by replacing U− → U+, k− → k+,
and ψh(x, y) → ψ∗

h(x, y). In our notation, U± =
∓ 1√

2
(X ± iY ) and k± = ∓ 1√

2
(kx ± iky). The Bloch am-

plitudes X , Y , and Z describe the valence band in the
absence of SOI. In blocks Hhh and Hll, the motion along
z separates; we denote the corresponding eigenenergies

and eigenfunctions by E
h/l
n and f

h/l
n (z), respectively.

The tunneling amplitudes tiσs are found as

tiσs =
∑

u=X,Y,Z

Tu 〈u, σ|Ψs(ri)〉 , (8)

where Tu is the coupling strength between Bloch ampli-
tude u and the lead, and 〈u, σ|Ψs(ri)〉 are the projec-
tions of the QD eigenstates Ψs(r), see Eq. (6), onto the
product state of Bloch amplitude u and spinor |σ〉. The
tunneling amplitudes in Eq. (8) depend on the point of
tunneling, ri = rL, rR, the component of the true spin in
the lead, σ =↑, ↓, and the component of the Kramers dou-
blet on the dot, s =⇑,⇓. We remark that TX , TY , and TZ
appear in Eq. (8) as phenomenological parameters. They
depend on the details of the metal-semiconductor inter-
face and cannot be determined within the k · p-theory
used here. We find

tiσs ∝
(

Φ̄1(ri) χ̄2(ri)
χ̄1(ri) Φ̄2(ri)

)

, (9)
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FIG. 4. (color online) (a) Tunneling polarization Mz as a
function of the space coordinate ρ for two Fock-Darwin states
(n,m) as indicated and for ωc = 0.1ω0. (b) B-field depen-
dence of the difference ∆Mz = Mz(ρL) − Mz(ρR), for the
values of ρL and ρR indicated in (a). (c) ∆Mz as a function
of θ for a fixed value of |B|. The value of |B| corresponds to
ωc = ω0 at θ = 90◦.

where Φ̄i(r) and χ̄i(r) are obtained from Eq. (7) by re-
placing Z → TZ and U± → ∓ 1√

2
(TX ± iTY ).

The spin selectivity of the tunneling is best seen in the
matrix of the tunnel rates, Γss′ = π

∑

σ t
∗
σsνσtσs′ . With

ν↑ = ν↓ (case of non-FM leads) we find, up to a common
factor,

(

Γ⇑⇑ Γ⇑⇓
Γ⇓⇑ Γ⇓⇓

)

∝
(

∣

∣Φ̄1

∣

∣

2
+ |χ̄1|2 Φ̄∗

1χ̄2 + χ̄∗
1Φ̄2

Φ̄∗
2χ̄1 + χ̄∗

2Φ̄1

∣

∣Φ̄2

∣

∣

2
+ |χ̄2|2

)

.

(10)
At B = 0, time-reversal symmetry requires that

Φ2(r) = [Φ1(r)]
∗ and χ2(r) = − [χ1(r)]

∗ , (11)

leading to Γ⇑⇑ = Γ⇓⇓ and Γ⇑⇓ = Γ⇓⇑ = 0 in Eq. (10).
At B 6= 0, however, the orbital effect of the B-field

modifies the functions Φi(r) and χi(r), such that the
relations in Eq. (11) are no longer satisfied. In gen-
eral, the matrix Γss′ has nonzero off-diagonal elements.
Since it is a hermitian matrix, there exists a direction in
space, M , such that a rotation of the quantization axis
to the direction of M makes the rate matrix diagonal,
Γ = diag(Γ⇑,Γ⇓), with Γ⇑ ≥ Γ⇓. To quantify the spin
selectivity of the tunneling, we define

|M | = Γ⇑ − Γ⇓
Γ⇑ + Γ⇓

. (12)

In respect to transport, M is analogous to the polariza-
tion vector of the FM lead. Indeed, the maximum of spin
selectivity in tunneling from a FM is achieved when the
FM is a half-metal, e.g., ν↑ 6= 0 and ν↓ = 0. This extreme
case corresponds toM = 1 and can be approached in our
case by increasing Bz.
In order to illustrate the origin of the spin selectivity,

we focus on the special case: TX = TY = 0 and TZ 6= 0
and refer to this tunneling model as the Z-model. In the
Z-model, M is parallel to the z-axis. Tunneling to the
hole states is possible only due to the admixture of the
LH subbands. Furthermore, in this model, the spin selec-
tivity is determined by the fact that χ̄1(r) ∝ k−ψh(x, y)

and χ̄2(r) ∝ k+ψ
∗
h(x, y), whereas Φ̄i(r) ≡ 0. Using this

information in Eqs. (10) and (12), we specify ψh(x, y)
to the Fock-Darwin states [27]. Therefore, we assume
that U(x, y) in Eq. (3) is given by U(ρ) = m∗ω2

0ρ
2/2,

where m∗ is the effective mass for in-plane motion, ω0 is
the oscillator frequency of the harmonic potential, and
ρ2 = x2 + y2. For the first two states (n = 0 and
m = 0,−1), we obtain

Mz = − ωωc

ω2 + ω2
c/4

, (13)

where ω =
√

ω2
0 + ω2

c/4, and ωc = eBz/m
∗c. For these

states, Mz depends on Bz but not on ρ, see Fig. 4(a). For
Bz 6= 0, the contacts will exhibit spin-dependent tunnel
rates with the same polarization value Mz regardless of
position of the tunneling point. In such a case, no asym-
metry in the inelastic CT is expected.
For higher energy levels, Mz may depend on ρ,

Mz =

[

ω

ωc
f(ρ) +

ωc

4ω

1

f(ρ)

]−1

, (14)

where f(ρ) is given for arbitrary n and m in Supple-
mentary Material. We consider further the state n = 0
and m = 1, for which f(ρ) = 2~/(m∗ωρ2) − 1. Now Mz

depends both on Bz and on ρ, see Fig. 4(a). The spin po-
larization of two contacts positioned arbitrarily on a QD
may differ significantly from each other, see, e.g., points
ρL and ρR in Fig. 4(a). The asymmetry in the inelastic
CT is related to ∆Mz = Mz(ρL)−Mz(ρR) 6= 0. ∆Mz in-
creases with Bz [Fig. 4 (b)], displaying at the same time
strong dependence on the B-field direction [Fig. 4 (c)],
in good qualitative agreement with the results in Fig. 3.
Finally, our theory also explains the symmetry relation

in Eq. (1). On the one hand, the spin-selective part of
Γss′ is proportional to Bz and therefore it changes sign
when flipping the direction of the magnetic field. On the
other hand, the Zeeman energy also changes sign when
flipping the direction of the magnetic field, exchanging
thus the roles of the ground and the excited state. There-
fore, A does not change upon B → −B.
The described joint effect of SOI and Zeeman split-

ting explains our experimental findings. In addition, it
opens the door to an original scheme for measuring Rabi
spin oscillations in QDs confining holes. Let us consider
a spin-1/2 QD in the CB regime under a perpendicular
B of the order of a few T. In such a case, a transport
characteristic of the type shown in Fig. 2(c) is to be ex-
pected. For V = 0, no current flows through the QD.
Yet we suggest that a finite current could be generated
by a resonant rf field (at frequency f = EZ/h) capable of
inducing coherent oscillations between the Zeeman-split
states of the QD. In fact, as the excited ⇑ state becomes
populated it can decay to the ground ⇓ state by an inelas-
tic CT process—a hole tunnels out of the QD from the ⇑
state being replaced by another hole tunneling into the
⇓ state. Because ⇑ and ⇓ states have tunnel couplings
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with opposite asymmetries, in a configuration such as the
one depicted in Fig. 1(b) the most favorable CT relax-
ation process would involve the transfer of a hole from
the right to the left contact. Hence a net dc current could
be driven by a continuous resonant irradiation. In addi-
tion, combining rf bursts with synchronized VG pulses
may enable the coherent control of the QD pseudo-spin
states. In this scheme, well-defined pseudo-spin rotations
would be performed in the deep CB regime (i.e. during a
negative VG pulse), whereas pseudo-spin read-out would
take place in the CT regime.
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