Wγ Production and Limits on Anomalous WWγ Couplings in pp[over ¯] Collisions at sqrt[s]=1.96 TeV
V. M. Abazov et al. (DO Collaboration)
Phys. Rev. Lett. 107, 241803 — Published 9 December 2011
DOI: 10.1103/PhysRevLett.107.241803
Wγ production and limits on anomalous WWγ couplings in p¯p collisions at \(\sqrt{s} = 1.96 \) TeV

University of Science and Technology of China, Hefei, People's Republic of China

LPNHE, Université Paris VI and VII, CNRS/IN2P3, Paris, France

The University of Manchester, Manchester M13 9PL, United Kingdom

The University of Arizona, Tucson, Arizona 85721, USA

II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

Ludwig-Maximilians-Universität München, München, Germany

Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Panjab University, Chandigarh, India

Delhi University, Delhi, India

Tata Institute of Fundamental Research, Mumbai, India

University College Dublin, Dublin, Ireland

Korea Detector Laboratory, Korea University, Seoul, Korea

CINVESTAV, Mezico City, Mezico

Nikhef, Science Park, Amsterdam, the Netherlands

Radboud University Nijmegen, Nijmegen, the Netherlands

Joint Institute for Nuclear Research, Dubna, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow State University, Moscow, Russia

Institute for High Energy Physics, Protvino, Russia

Petersburg Nuclear Physics Institute, St. Petersburg, Russia

Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d'Altes Energies (IFAE), Barcelona, Spain

Stockholm University, Stockholm and Uppsala University, Uppsala, Sweden

Lancaster University, Lancaster LA1 4YB, United Kingdom

Imperial College London, London SW7 2AZ, United Kingdom

The University of Manchester, Manchester M13 9PL, United Kingdom

University of Arizona, Tucson, Arizona 85721, USA

University of California Riverside, Riverside, California 92521, USA

(The D0 Collaboration)
We measure the cross section and the difference in rapidities between photons and charged leptons for inclusive $W\to l\nu + \gamma$ production in $e\gamma$ and $\mu\gamma$ final states. Using data corresponding to an integrated luminosity of 4.2 fb$^{-1}$ collected with the D0 detector at the Fermilab Tevatron Collider, the measured cross section times branching fraction for the process $p\bar{p} \to W\gamma + X \to l\nu\gamma + X$ and the distribution of the charge-signed photon-lepton rapidity difference are found to be in agreement with the standard model. These results provide the most stringent limits on anomalous $WW\gamma$ couplings for data from hadron colliders: $-0.4 < \Delta\kappa_{\gamma} < 0.4$ and $-0.08 < \lambda_{\gamma} < 0.07$ at the 95% C.L.

PACS numbers: 14.80.Bn, 13.85.Rm, 13.85.Qk

The electroweak component of the standard model (SM) has been remarkably successful in describing experimental results. The $WW\gamma$ vertex is one example of self-interactions of electroweak bosons that are a consequence of the non-abelian $SU(2)_L \times U(1)_Y$ gauge symmetry of the SM. In this Letter we use the process $p\bar{p} \to W\gamma \to l\nu\gamma (l = e, \mu)$ to study this vertex and to search for any anomalous departure from SM $WW\gamma$ couplings.

An effective Lagrangian parameterizes the $WW\gamma$ couplings with two parameters, κ_γ and λ_γ [1, 2], under the assumptions of electromagnetic gauge invariance, charge conjugation (C), parity (P) and CP conservation. The κ_γ and λ_γ couplings are related to the magnetic dipole and electric quadrupole moments of the W boson [1, 2]. In the SM, $\kappa_\gamma = 1$ and $\lambda_\gamma = 0$, and it is customary to introduce into the notation the difference $\Delta\kappa_{\gamma} \equiv \kappa_{\gamma} - 1$.

To assure that the $W\gamma$ cross section does not violate unitarity, a form factor, with a common scale A for each non-SM coupling parameter, is introduced to modify the terms as $a_0 \to a_0/(1 + s/A^2)^2$, where $a_0 = \kappa_\gamma, \lambda_\gamma$, and s is the square of the partonic center-of-mass energy. In
this analysis, the scale Λ is set to 2 TeV. Contributions from anomalous couplings will increase the $W\gamma$ production cross section and yield photons of higher energy than in the SM process[2].

In the SM, tree level production of a photon in association with a W boson occurs due to prompt $W\gamma$ production via the diagrams shown in Fig. 1 or via final state radiation (FSR), where a lepton from the W boson decay radiates a photon. It is an important property of the SM prediction at leading order (LO) that the interference between the amplitudes in Fig. 1 produces a zero in the total $W\gamma$ yield at a specific angle θ^* between the W boson and the incoming quark [3] in the $W\gamma$ rest frame. Since in hadronic collisions the longitudinal momenta of neutrinos from W decay cannot be measured, the angle θ^* at which the radiation amplitude is zero is difficult to measure directly. However, the radiation amplitude zero (RAZ) is also visible in the charge-signed photon-lepton rapidity difference as a dip around $-1/3$ [4].

![FIG. 1: (color online). Feynman diagrams for prompt $W\gamma$ production.](image)

In this Letter, we present measurements of the cross section and the distribution of the charge-signed photon-lepton rapidity difference for $W\gamma$ production as well as a search for anomalous $WW\gamma$ couplings, using data corresponding to an integrated luminosity of 4.2 ± 0.3 fb$^{-1}$ collected by the D0 detector at $\sqrt{s} = 1.96$ TeV at the Fermilab Tevatron Collider. $W\gamma$ production has been studied previously at hadron colliders [5–9]. The latest published D0 result [8] represent the most stringent constraints on anomalous $WW\gamma$ couplings, and include the first study of the charge-signed photon-lepton rapidity difference at a hadron collider. The results of the present analysis provide a significant improvement in the sensitivity to $WW\gamma$ couplings through a nearly factor of six increase in data and by using an artificial neural network for photon identification.

The D0 detector [10] comprises a central tracking system in a 2 T superconducting solenoidal magnet, surrounded by a central preshower (CPS) detector, a liquid–argon sampling calorimeter, and an outer muon system. The tracking system, a silicon microstrip tracker (SMT) and a scintillating fiber tracker (CFT), provides coverage for charged particles in the pseudorapidity range $|\eta| < 3$ [11]. The CPS is located immediately before the inner layer of the calorimeter, and has about one radiation length of absorber, followed by several layers of scintillating strips. The calorimeter consists of a central sector (CC) with coverage of $|\eta| < 1.1$, and two end calorimeters (EC) covering up to $|\eta| \approx 4.2$. The electromagnetic (EM) section of the calorimeter is segmented into four longitudinal layers (EMi, $i = 1, 4$) with transverse segmentation of $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ [11], except in EM3, where it is 0.05×0.05. The muon system resides beyond the calorimeter and consists of a layer of tracking detectors and scintillation trigger counters before 1.8 T iron toroidal magnet, followed by two similar layers after the toroid. The coverage of the muon system corresponds to $|\eta| < 2$.

Candidate events with the W boson decaying into an electron and a neutrino are collected using a suite of single-electron triggers. The electrons are selected by requiring an EM cluster in either the CC ($|\eta| < 1.1$) or EC (1.5 < |η| < 2.5) with transverse energy $E_T > 25$ GeV contained within a cone of radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ centered on the axis of the EM shower. At least 90% of the cluster energy must be deposited in the EM section of the calorimeter. In addition, electron candidates are required to be isolated in the calorimeter and in the tracking detector, have a shower shape consistent with that of an electron, and a spatial match to a track. A multivariate likelihood discriminant, which includes information from the spatial track match, must be consistent with that for an electron. An artificial neural network is trained using information from the tracker, calorimeter, and CPS detectors to further reject background from jets misidentified as electrons. The event missing transverse energy, $E_{T\nu}$ [12], must exceed 25 GeV, and the transverse mass of the W boson, M_T [13], must exceed 50 GeV. To reduce the background from $Z/\gamma^* \rightarrow ee$, where an electron is misidentified as a photon because of tracking inefficiency, the azimuthal angle between the electron and photon is required to be $\Delta \phi_{ee} < 2$.

Candidate events with the W boson decaying into a muon and a neutrino are also collected using a suite of single-muon triggers. The muons are required to be within $|\eta| < 1.6$, isolated in both the tracker and the calorimeter, and matched to a track with transverse momentum $p_T > 20$ GeV. To suppress the $Z/\gamma^* \rightarrow \mu\mu$ background, the E_T in the event must exceed 20 GeV, M_T must exceed 40 GeV, and there must be no additional muons or tracks with $p_T > 15$ GeV.

The photon candidates in both the electron and muon channels are required to have transverse energy $E_{T\gamma} > 15$ GeV within a cone of radius $\Delta R = 0.2$ centered on the EM shower. In addition, photon candidates are required to be either in the CC ($|\eta| < 1.1$) or EC (1.5 < |η| < 2.5) and must satisfy the following requirements: (i) at least 90% of the cluster energy is deposited in the EM...
the data analysis. The simulated events are processed using the same reconstruction code that is used for data. W+jet production is the dominant background for both the electron and muon channels. To estimate this background, the fraction of jets that pass the photon selection criteria but fail either the p_T^{miss} or the shower width requirement, as determined by using a multijet data sample, is parameterized as a function of E_T^γ and η. The background from W+jet production is then estimated starting from an orthogonal data sample by reverting the requirements either on p_T^{miss} or on shower width requirement, and applying the same parameterization. As a cross-check, the W+jet background is also estimated through a fit to the O_{NN} distribution in data, using MC templates constructed from generated photon and jet events. The result is in good agreement with that obtained from the ratio method. The “leX” background is also estimated from an orthogonal data sample by requiring the electron candidate to be matched to a high-quality track. The number of “leX” events is obtained by using this orthogonal data sample, taking into account the ratio of the track–matching inefficiency to the track matching efficiency obtained from $Z \to ee$ data. Events in the electron channel that have both the electron and photon in the EC are excluded from this analysis, because of the poor acceptance for signal and the presence of overwhelming background. The number of predicted and observed events in both the electron and muon channels are summarized in Table I.

The sources of systematic uncertainty that affect the signal acceptance and the background normalization include: integrated luminosity (6.1%), trigger efficiency (5%), electron identification (3%), muon identification (3%), photon identification (3%), track veto (0.9%), signal acceptance due to uncertainties on PDF (0.4%), predicted cross sections for $Z \to ll$ (4%) and $W \to \tau\nu$ (3%), and estimation of W+jet background (10%).

The measured cross sections multiplied by the branching fractions for $\sigma(pp \to W\gamma + X \to \nu\tau + X)$ for photons with $E_T^\gamma > 15$ GeV and $\Delta R_{\gamma\gamma} > 0.7$ are 7.9 ± 0.7 (stat.) ± 0.7 (syst.) pb for the electron channel, and 7.4 ± 0.5 (stat.) ± 0.7 (syst.) pb for the muon channel. The detector resolution effects that would result in some of the events failing the $E_T^\gamma > 15$ GeV requirement for this analysis is calculated using this orthogonal data sample, taking into account the ratio of the track–matching inefficiency to the track matching efficiency obtained from $Z \to ee$ data. Events in the electron channel that have both the electron and photon in the EC are excluded from this analysis, because of the poor acceptance for signal and the presence of overwhelming background. The number of predicted and observed events in both the electron and muon channels are summarized in Table I.

The sources of systematic uncertainty that affect the signal acceptance and the background normalization include: integrated luminosity (6.1%), trigger efficiency (5%), electron identification (3%), muon identification (3%), photon identification (3%), track veto (0.9%), signal acceptance due to uncertainties on PDF (0.4%), predicted cross sections for $Z \to ll$ (4%) and $W \to \tau\nu$ (3%), and estimation of W+jet background (10%).

The measured cross sections multiplied by the branching fractions for $\sigma(pp \to W\gamma + X \to \nu\tau + X)$ for photons with $E_T^\gamma > 15$ GeV and $\Delta R_{\gamma\gamma} > 0.7$ are 7.9 ± 0.7 (stat.) ± 0.7 (syst.) pb for the electron channel, and 7.4 ± 0.5 (stat.) ± 0.7 (syst.) pb for the muon channel. The detector resolution effects that would result in some of the events failing the $E_T^\gamma > 15$ GeV

<p>| TABLE I: Number of predicted and observed events with statistical and systematic uncertainties. |
|---|---|---|</p>
<table>
<thead>
<tr>
<th>Event</th>
<th>$e\nu\gamma$ channel</th>
<th>$\mu\nu\gamma$ channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W+$jet</td>
<td>33.9 ± 3.7</td>
<td>64.6 ± 6.8</td>
</tr>
<tr>
<td>leX</td>
<td>1.1 ± 0.6</td>
<td>2.1 ± 0.7</td>
</tr>
<tr>
<td>$Z\gamma \to ll\gamma$</td>
<td>1.8 ± 0.3</td>
<td>17.6 ± 1.9</td>
</tr>
<tr>
<td>$W\gamma \to \tau\nu\gamma$</td>
<td>2.3 ± 0.3</td>
<td>5.4 ± 0.6</td>
</tr>
<tr>
<td>Total background</td>
<td>39.1 ± 3.8</td>
<td>89.7 ± 7.2</td>
</tr>
<tr>
<td>SM $W\gamma$ prediction</td>
<td>150.9 ± 13.8</td>
<td>282.1 ± 25.4</td>
</tr>
<tr>
<td>Data</td>
<td>196</td>
<td>363</td>
</tr>
</tbody>
</table>
and $\Delta R_{\ell\tau} > 0.7$ requirements at the generator level but passing them at the reconstructed-object level have been taken into account. Taking into account the correlation in systematic uncertainties, the combined results yield a cross section multiplied by the branching fraction of 7.6 ± 0.4 (stat.) ± 0.6 (syst.) pb, which is in good agreement with the SM expectation of 7.6 ± 0.2 pb.

The charge-signed photon-lepton rapidity difference for the combination of the two channels is shown in Fig. 2. Because of significant charge mis-identification of EC electrons, only events with CC electrons are used in Fig. 2. The background-subtracted data are in good agreement with the SM prediction, and a χ^2 test comparing the background-subtracted data with the SM prediction yields 4.6 for 11 degrees of freedom. The charge-signed photon-lepton rapidity difference is measured to be 7.6 ± 1.3 (syst.) units for EC events only.

The photon E_T^γ distributions in Fig. 3 show good agreement between data and the SM prediction. Therefore, we use the photon E_T^γ spectra to derive limits on anomalous $WW\gamma$ trilinear couplings using a binned likelihood fit to data. The likelihood is calculated assuming Poisson statistics for the number of events in data, the signal, and the background. All systematic uncertainties on sources of background, efficiencies, and luminosity are assumed to be Gaussian, and their correlations are taken into account in the fit. The 95% C.L. limits on the $WW\gamma$ coupling parameters are shown in Fig. 4, with the contour defining the two-dimensional exclusion limits. The one-dimensional 95% C.L. limits are shown as the vertical and horizontal lines.

In summary, we have studied $W\gamma$ production using data corresponding to an integrated luminosity of 4.2 fb$^{-1}$ collected by the D0 detector at the Fermilab Tevatron Collider. The cross section multiplied by the branching fraction for the process $p\bar{p} \rightarrow W\gamma + X \rightarrow l\nu \gamma + X$ is measured to be 7.6 ± 0.4 (stat.) ± 0.6 (syst.) pb, which is in good agreement with the SM expectation of 7.6 ± 0.2 pb for $E_T^\gamma > 15$ GeV and $\Delta R_{\ell\tau} > 0.7$. The distribution of the charge-signed photon-lepton rapidity difference has a minimum near $Q_l \times (\eta - \eta_l) = -1/3$, consistent with the SM prediction. We also set the most stringent limits on anomalous $WW\gamma$ couplings at a hadron collider, with the one-dimensional parameters restricted to $-0.4 < \Delta \kappa < 0.4$ and $-0.08 < \lambda_\gamma < 0.07$, at the 95% C.L.
We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

[11] Pseudorapidity is defined as $\eta = -\ln[\tan(\theta/2)]$, where θ is the polar angle relative to the proton beam direction. ϕ is defined to be the azimuthal angle in the plane transverse to the proton beam direction.