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Dwarf spheroidal galaxies are known to be excellent targets for the detection of annihilating
dark matter. We present new limits on the annihilation cross section of Weakly Interacting Massive
Particles (WIMPs) based on the joint analysis of seven Milky Way dwarfs using a frequentist Neyman
construction and Pass 7 data from the Fermi Gamma-ray Space Telescope. We exclude generic
WIMP candidates annihilating into bb̄ with mass less than 40 GeV that reproduce the observed relic
abundance. To within 95% systematic errors on the dark matter distribution within the dwarfs, the
mass lower limit can be as low as 19 GeV or as high as 240 GeV. For annihilation into τ+τ− these
limits become 19 GeV, 13 GeV, and 80 GeV respectively.

PACS numbers: 95.35.+d, 11.30.Rd, 98.80.-k, 95.55.Ka, 07.85.-m

Weakly Interacting Massive Particles (WIMPs) have
long been considered well-motivated and generic candi-
dates for dark matter [1–6]. By virtue of weak inter-
actions with standard model particles, WIMPs in ther-
mal equilibrium in the early universe “freeze out” by the
same mechanism which explains the observed abundance
of light nuclei. The present-day abundance of WIMPs is
governed by their annihilation cross section into standard
model particles.

Due to the form of their weak-scale cross section,
WIMPs have a dark matter density Ωχh

2 ' 3 ×
10−27 cm3 s−1/〈σAv〉, roughly irrespective of the parti-
cle mass [7]. For the measured Ωχh

2 ' 0.1 [8], the
velocity-averaged annihilation cross section is 〈σAv〉 ∼
3× 10−26 cm3 s−1. Because a smaller cross section over-
produces the observed density, this value should be seen
as a relatively strong lower bound on 〈σAv〉 in the canoni-
cal thermal WIMP scenario. If observations can lower the
upper limit on 〈σAv〉 below this level, they will present a
serious challenge to the conventional WIMP hypothesis
(see e.g., [9–13]).

It is well known that Milky Way dwarf galaxies are ex-
cellent targets to search for dark matter annihilation sig-
natures: they are dark matter dominated objects with no
astrophysical backgrounds (no hot gas). Measurements
of the velocity dispersion of stars in these systems allows
the reconstruction of the potential well and thus the den-
sity profile of the dark matter distribution [14–16].

In order to place constraints on the annihilation cross
section, we must quantify how the value of 〈σAv〉 in-
fluences the number of γ-ray events detected with the
Large Area Telescope (LAT) onboard the Fermi Gamma-
ray Space Telescope (Fermi). There are two sources of
detected photon events: those arising from dark matter
matter annihilation (signal), and those produced by any
other processes (background).

In the canonical picture, dark matter annihilates and
gives rise to a γ-ray flux which factors into two inde-
pendent terms: one describing the dark matter particle
physics and one involving the astrophysical properties of

the dwarf galaxy. The expected number of signal events
is

µ(ΦPP) ≡ (AeffTobs)× ΦPP × J, (1)

where Aeff is the effective area of the detector and Tobs

is the observation time. The product AeffTobs is called
the exposure. The goal is to place limits on the quantity
ΦPP which encompasses the particle physics. For self-
conjugate particles it is defined as

ΦPP ≡
〈σAv〉
8πM2

χ

Mχ∫
Eth

∑
f

Bf
dNf
dE

dE,

where Mχ is the mass of the dark matter particle and
〈σAv〉 is its total velocity-averaged cross section for an-
nihilation into standard model particles. The index f
labels the possible annihilation channels and Bf is the
branching ratio for each. For any channel, dNf/dE is the
final γ-ray spectrum. This quantity is integrated from a
threshold energy Eth to the mass of the dark matter par-
ticle.

The quantity J contains information about the distri-
bution of dark matter and is defined by

J ≡
∫

∆Ω(ψ)

∫
`

[ρ(`, ψ)]2 d` dΩ(ψ).

Here, the square of the dark matter density is integrated
along a line of sight in a direction ψ, and over solid angle
∆Ω.

Typically, the background is derived through detailed
modeling of possible contributions [17]. This was the ap-
proach taken in the Fermi Collaboration analysis [18–21].
In this work we eschew such detailed modeling of the ori-
gin and spectral properties of the γ-ray background, and
instead use the photon events in the region near each
dwarf to empirically derive the background from all un-
resolved sources.
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The fundamental assumption of our strategy is this:
whatever the processes are which give rise to the photon
events nearby each dwarf, these same processes are also
at work in the direction of the dwarf. That is, the proba-
bility that background processes produce photons at the
location of a dwarf can be determined by the empirical
probability distribution found by sampling the observed
counts in the surrounding region. The region surround-
ing each dwarf is a “sideband” used to determine the
background. This approach requires zero free parame-
ters and the entire analysis depends only on the value of
ΦPP.

We use BootesI, Draco, Fornax, Sculptor, Sextans,
Ursa Minor, and Segue1 because none are in a crowded
field or near known γ-ray sources. We utilize the updated
values of J presented in [21]. The J values are derived
based on modeling the velocity dispersion profiles of stars
in each dwarf [14–16].

We define a Region of Interest (ROI) to be a region of
the sky with a radius of 0.5◦ containing all Pass 7 pho-
tons of evclass=2 available publicly on the Fermi Sci-
ence Support Center (FSSC) [22], in the Mission Elapsed
Time interval of [239557417-334619159] seconds (August
4, 2008 15:43:36 UTC to August 9, 2011 21:45:57 UTC),
and with energies [1-100] GeV (at these energies, the
point spread function (PSF) is always less than 1◦). For
each ROI, we use the publicly available version v9r23p1

of the Fermi Science Tools to extract photons (with
zmax=100), select good time intervals (with all standard
recommendations as stated on the FSSC), and compute
the exposure (AeffTobs), which also takes into account
the shape of the PSF within the ROI using the Instru-
ment Response Function P7SOURCE V6. Because the PSF
is energy dependent, the exposure must be averaged with
the annihilation energy spectrum. For a range of power-
law indices of the spectrum the exposure within an ROI
changes by at most 5%, making this a negligible effect in
the cross section limits.

We identify and mask all sources present within 10◦

of each dwarf using the 2nd Fermi Source Catalogue [23]
(with a masking size of 0.8◦). We calculate the probabil-
ity of observing background events at the location of the
dwarf by sampling 105 ROIs which are randomly selected
within a distance of 10◦ from each dwarf, and counting
the events in each. A window is rejected if it overlaps
with a masked location or with the boundary. There
are approximately (10/0.5)2 = 400 independent ROIs for
each dwarf. The background probability mass function
(PMF) is given by the fraction of ROIs that contained
a given number of counts (the PMF is not sensitive to
increasing the mask size to 2◦). This PMF is taken to
be the probability distribution governing the number of
background photons which contribute to the central ROI.

The accuracy of this strategy requires the total expo-
sure not vary within a 10◦ radius around each dwarf and
we find that it varies by at most ∼ 5%. If a γ-ray source

is close to a dwarf it may contribute photons to the cen-
tral ROI. These source photons are not accounted for in
the empirical background PMF. Therefore, such photons
are considered more likely to be from dark matter anni-
hilation and will weaken the derived limit. In this sense,
our analysis is conservative. The PMFs are well fit by
Poisson distributions and do not contain features that
would be expected from source contamination1.

In statistical inference one wants to generate confi-
dence intervals for a model parameter µ based on ob-
served data x. In a frequentist analysis the main task is
to decide on an algorithm which constructs a region in
µ-space for any value of x. This region is said to be an
α-confidence interval if the algorithm has “coverage” α
(see e.g. [24, 25]).

One way to construct and visualize confidence intervals
is by using the Neyman construction [25, 26]. The ingre-
dients needed are the parameter space of possible µ val-
ues, a space of possible measurements x, and a likelihood
function P(x|µ), which gives the probability of observing
x if µ were the true value of the parameter (µ and x can
both live in any number of dimensions). For each pos-
sible value of the parameter µ one selects a region D(µ)
of the measurement space such that

∫
D(µ)

P(x|µ) = α

(i.e. the probability of measuring x to be in D(µ) is α if
the true value of the parameter were µ). These regions
are called confidence belts. For an actual measurement
x∗, these pre-selected belts can be used to generate an
α-confidence region for µ. This region is simply the col-
lection of all the µ values whose belt D(µ) contains x∗.
This algorithm for constructing a region in µ-space out of
a measured value x∗ provides the proper coverage: what-
ever the true value µt is, there is an α chance that x∗ will
lie in D(µt) (by construction) and therefore an α chance
that the resulting confidence interval will contain µt.

In this analysis, the observations consist of the number
of counts Ni from the central ROI containing each dwarf
(i = 1, . . . , 7). These can be considered the components
of a vector N living in a 7-dimensional integer lattice. To
apply the Neyman construction we must choose a con-
fidence belts in this 7-dimensional “N -space” for every
possible value of ΦPP, such that the probability that N
is measured to be in this belt is α.

There is complete freedom in the choice of belts (pro-
vided they have coverage α). Nevertheless, it is vital
that the shape of the belts for each ΦPP not be based
on the measured data. This offense is known as “flip-
flopping” [25]. It may result in confidence levels having
lower coverage than stated. Here, the confidence belts
are constructed without prior knowledge of the number of

1 See supplementary material at [URL] for the empirically derived
PMFs, weights, and counts in the central ROI for the dwarfs
used in this analysis.
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FIG. 1: Illustration of the Neyman confidence belt construc-
tion used to generate upper limits on ΦPP. Each axis rep-
resents the number of events that could be observed from a
given dwarf (here, Dwarf A has a larger J value than Dwarf B
does). The shaded area, bordered by the solid line, represents
the confidence belt for a particular value of ΦPP. The dashed
lines are the borders of the confidence belts for different values
of ΦPP, with ΦPP increasing from left to right. The borders
are chosen to be normal to a vector of “sensitivities”, which
weights each dwarf according to the relative strength of its
dark matter signal. Once a measurement is made (shown by
the star) the confidence interval for ΦPP contains all values of
ΦPP whose confidence belt contains the measured point. The
dotted line shows the border for an alternative construction of
the confidence belts which gives equal weight to each dwarf.

counts within the central ROI around each dwarf. Under
the assumption that the empirically derived background
PMFs, exposures, and J values are correct, the belts have
the proper coverage.

In order to derive an upper limit on ΦPP, the N -space
should be divided into two simple parts and the belt
D(ΦPP) should consist of the “large” N values (i.e. the
region containing Ni = ∞). This is illustrated in Fig. 1
for an example joint analysis of two dwarfs. The sim-
plest choice for the confidence belt boundaries are planes
with normal vectors parallel to (1, . . . , 1), represented in
Fig. 1 by the dotted line. A measured set of Ni is in such
a confidence belt if the sum of the Ni is greater than
some value. This is equivalent to “stacking” the events
from each dwarf and then analyzing this single image.
However, because the dwarfs are treated equally, pho-
tons from a dwarf with a small J value are considered
as likely to have come from dark matter as are photons
from a dwarf with large J . This is an inefficient choice
for the confidence belts. Naively, one extra photon from

Draco (J ∝ 0.63) should raise the upper limit more than
an extra photon from BootesI (J ∝ 0.05) because, a pri-
ori, a given photon from BootesI is much more likely to
be from background than a photon from Draco.

To overcome this obstacle we take advantage of the
recent idea by Sutton [27] to use planes at angles other
than 45◦ as boundaries of the confidence belts. Sutton
suggests letting the normal vector to the planes be equal
to a vector representing the “sensitivity” of each observa-
tion. We take the sensitivity (or weight) of each dwarf ob-
servation to be proportional to the ratio of the expected
dark matter flux (AeffTobs J) to the mean expected em-
pirical background flux. In contrast, giving every dwarf
the same weight can weaken the limits by as much as
25%.

The number of photons received in the central ROI
containing each dwarf is the sum of the number of pho-
tons from dark matter annihilation and the number pro-
duced by all background processes. The number of signal
photons is governed by a Poisson distribution with mean
µ(ΦPP) (Eq. 1). The number of background photons is
described by the empirical background PMF. Therefore,
the total number of photons detected is distributed ac-
cording to the convolution of these two probability dis-
tributions. The counts found for each dwarf are indepen-
dent variables and so the joint probability of measuring
N is given by the product of the individual PMFs.

Using this statistical framework we derive a 95% upper
bound of ΦPP = 5.0+4.3

−4.5×10−30 cm3 s−1 GeV−2. In order
to translate the bound on ΦPP into a bound on 〈σAv〉 as a
function of Mχ we need to assume a specific annihilation
channel and its spectrum dN/dE. It is generally assumed
that a WIMP annihilates primarily into hadrons (e.g.
bb̄) or heavy leptons (e.g. τ+τ−), which then decay by
fairly well constrained channels into γ-rays. We compute
dN/dE for these channels using DarkSUSY [28, 29].

Figure 2 shows the derived 95% upper bound on 〈σAv〉
as a function of WIMP mass. For annihilation into bb̄
(τ+τ−) WIMP masses less than 40 GeV (19 GeV) are ex-
cluded using the central J values. The dominant source
of systematic uncertainty comes from the poorly con-
strained J for each dwarf and is shown by the shaded
regions in Fig. 2. The ΦPP limit is recalculated for each
dwarf as its J varies between its upper and lower 95%
error bar given in [21]. The results for each dwarf are
then added in quadrature (this procedure gives a nearly
identical region as that derived by scanning over the log-
normal priors on J for each dwarf [14, 15, 21]).

If we knew the exact J value of each dwarf, the width
of the shaded regions in Fig. 2 would shrink to zero. How-
ever, due to the uncertainties in J , we have no knowledge
of where this upper limit lies within the shaded region.
Presenting the limit in this fashion separates the inher-
ent statistical uncertainties (Poisson-distributed photon
counts) from the systematic errors in the J ’s, which in
principle could be known exactly (each dwarf has “a”
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FIG. 2: Derived 95% upper limit on 〈σAv〉 as a function of
mass for dark matter annihilation into bb̄ and τ+τ−. The
shaded area reflects the 95-percentile of the systematic un-
certainty in the dark matter distribution of the dwarfs. The
canonical annihilation cross section for a thermal WIMP mak-
ing up the total observed dark matter abundance is shown by
the dashed line. The inset figure shows detail for lower masses.

dark matter distribution). At the present time there
is no consensus on the dark matter distribution within
Milky Way dwarfs. The systematic error bands should
be thought of as an exploration of possible models for the
dark matter distribution (for an alternative analysis of J
values see Charbonnier et al. [30]). Nevertheless, for any
model (set of J values) the construction presented here
gives a rigorous 95% upper limit on ΦPP.

For the most (least) conservative model the lower limit
on the mass is 19 GeV (240 GeV) for bb̄, while for τ+τ−

these limits are 13 GeV (80 GeV). Segue1 is responsible
for most of the uncertainty in the limit due to its high
weight and uncertain dark matter content. However, if
Segue1 has a low J value, the statistical construction
downgrades its weight relative to other dwarfs such as
Draco and Ursa Minor.

The strength of the analysis relies on the validity of the
assumption that the background at the location of each
dwarf is adequately described by the empirical PMF. In
general, if the assumed background PMF is skewed to-
ward higher numbers of counts the upper limit on ΦPP

becomes stronger. This is because more of the observed
counts can be attributed to background and therefore
fewer to dark matter annihilation. We can quantify the
effect of an error in the empirical PMF by considering the
radical case where we are certain there is no background
at all. This is a false assumption, but is one which will

produce the most conservative limit on ΦPP. If we force
the background PMFs to be equal to 1 when the num-
ber of counts is 0 and 0 otherwise, the 95% limit on ΦPP

increases by a factor of 4.4 over the actual limit. This
represents the case where every photon received from the
dwarf is believed to be due to dark matter annihilation.
We interpret this as a test of the robustness of the method
not as any sort of actual confidence limit. We can also
test our conclusions against less violent changes to the
background PMF. For each dwarf we replace the back-
ground PMF with a Poisson distribution having the same
mean, and find that the limit on ΦPP decreases by 7%.

What is the significance of this new bound on 〈σAv〉?
It signals, perhaps, that we are imminently approaching
an epoch of discovery. Three decades of experimental de-
sign have given rise to many detectors sensitive enough
to probe a very generic class of dark matter candidates.
The prime motivation for WIMP dark matter is the coin-
cidence that a weak-scale annihilation cross section nat-
urally reproduces the observed relic abundance. Unlike
the scattering cross section probed in direct detection
experiments, cosmology gives a lower limit for the anni-
hilation cross section. The parameter space in which a
WIMP can hide is therefore bounded at both ends. This
work, together with the Fermi-LAT collaboration result
[19–21], pushes the contact point between the upper and
lower bounds on 〈σAv〉 to increasing WIMP masses, sug-
gesting that observations have become powerful enough
to either discover or rule out the best-motivated and most
sought-after dark matter candidates.
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[28] P. Gondolo, J. Edsjö, P. Ullio, L. Bergström, M. Schelke,
and E. A. Baltz, J. Cosmology Astropart. Phys. 7, 8
(2004), arXiv:astro-ph/0406204.
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