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Universal chiral Luttinger liquid behavior has been predicted for fractional quantum Hall edge
states, but so far has not been observed experimentally in semiconductor-based two-dimensional
electron gases. One likely cause of this absence of universality is the generic occurrence of edge
reconstruction in such systems, which is the result of a competition between confinement potential
and Coulomb repulsion. We show that due to a completely different mechanism of confinement,
edge reconstruction can be avoided in graphene, which allows for the observation of the predicted
universality.
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Introduction. – Topological states of matter often
support protected gapless edge or surface excitations,
which in turn provide a window to probe the topol-
ogy of the bulk phases. This is the case for integer
and fractional quantum Hall (FQH) liquids, and topo-
logical insulators and superconductors. The FQH edge
states are described by chiral Luttinger liquid (CLL) the-
ory [1], and predicted to exhibit certain universal low-
energy properties like electron tunneling exponents, for
many bulk filling factors including the celebrated Laugh-
lin sequence [1]. Such universality, however, has not been
observed in FQH liquids formed in semiconductor-based
two-dimensional electrons gases (2DEGs) [2]. This is
clearly one of the most significant long-standing puzzles
in the field of quantum Hall effect. One likely cause of
this discrepancy is edge reconstruction [3, 4], which in-
duces additional non-chiral edge modes that are not tied
to the bulk topology; these additional modes ruin the
predicted universality [3, 5–7]. Edge reconstruction is a
consequence of competition between confinement poten-
tial that holds the electrons in the interior of the sample,
and Coulomb repulsion that tends to spread out the elec-
tron density. Detailed numerical studies [4, 8, 9] show
that due to the electrostatic configuration of semicon-
ductor 2DEG, edge reconstruction occurs generically in
the FQH regime. This suggests it is unlikely that one
can observe the predicted universality in these systems,
without carefully designing their electrostatic structure.

Recently, graphene has emerged as a brand new 2DEG
system, in which FQH effects have been observed [10–
12]. Its many fascinating properties due to the Dirac
nature of the electrons notwithstanding, we point out
that the mechanism for electron confinement is very dif-
ferent between graphene and semiconductor 2DEGs. In
the latter electrons are provided by dopants, which are
positively charged (so that the system is overall charge
neutral), and provide the dominant source of confine-
ment potential. Since these dopants are placed hundreds
or thousands of angstroms away from the 2DEG, the

confining potential is not strong enough to balance the
Coulomb repulsion at the edge, and prevent edge recon-
struction [4, 8, 9]. In graphene, on the other hand, elec-
trons come from (properly biased) metallic gates. The
charge neutrality is reflected by the fact that every elec-
tron carries an opposite image charge due to the metallic
gate; as a result the electron-electron interaction is of
dipole-diploe type at long distance, and no additional
neutralizing back ground charge is present (or needed).
Thus the one-body confinement potential is provided in-
stead by the presence of graphene boundaries.

In this work we study the combined effects of the Dirac
nature of electrons and the dipole nature of interaction,
and show that there is an experimentally accessible pa-
rameter window in which edge reconstruction can be
avoided. This points to the possibility of realizing uni-
versal CLL physics at graphene quantum Hall edges, and
resolving a long-standing puzzle in the field.

Model. – In this Letter we study ν = 1/3, at which
the first FQH state was observed in both semiconduc-
tor 2DEGs [13] and in single-layer graphene [10, 11].
In a semiconductor 2DEG, the 1/3-filled lowest Landau
level (LL) originates from a single band of nonrelativis-
tic electrons. In graphene, however, the 0th LL has a
4-fold spin and valley degeneracy with equal number of
states coming from the conduction and valence bands
that form two Dirac cones in a Brillouin zone. Hence
the ν = 0 state corresponds to a half-filled 0th LL and
is already nontrivial as there are multiple ways to oc-
cupy the LL. At zeroth order, Coulomb interaction is
spin- and valley-independent, giving rise to an internal
SU(4) symmetry, which is spontaneously broken due to
the exchange effect that gives rise to quantum Hall fer-
romagnetism [14]. Various symmetry-breaking pertur-
bations lift the SU(4) degeneracy and select the occu-
pied states [or a specific direction in the SU(4)-order-
parameter space]. The two obvious possibilities for the
half-filled 0th LL are fully-spin-polarized valley-singlet,
or fully-valley-polarized spin-singlet. Experimentally, an
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FIG. 1: (Color online) (a)Illustration of the system. A metal-
lic gate is placed at a distance d away from a single-layer
graphene. Each electron in the graphene has a positive image
charge at a distance 2d below the graphene layer.(b) Regions
of the d-Norb parameter space in which the global ground
state has the same total angular momentum M as the Laugh-
lin state M0 = 3N(N − 1)/2, for N = 5-10 electrons. (c)
Collapse of regions for different system sizes when (b) is re-
plotted against Nedge = Norb − (3N − 2). The Laughlin-like
regions for d ∼ lB (roughly 0.5 <

∼
d/lB <

∼
1.5, shaded area) are

not very sensitive to system size, hence a promising window
for the observation of universal edge physics. (d) The over-
laps between the ground-state and Laughlin wavefunction as
a function of d in the Laughlin phase (along selected paths).

insulating state was observed at ν = 0 at high fields [15];
this is most naturally understood as the formation of the
latter, as a spin-polarized valley-singlet supports gapless
edge states and is conductive [16–18]. We will thus as-
sume that the 1/3 state is built on an inert fully-valley-
polarized spin-singlet ν = 0 state (with no edge states).
This means that the electrons condensing into the 1/3
FQH liquid no longer has a valley degree of freedom, but
their spins remain active. In our numerical study below,
we will first assume the electron spins are also frozen out
by their Zeeman coupling to the external magnetic field,
and then release this constraint to study their possible
roles both in the bulk and at the edge.
We consider a graphene layer situated at a distance

d from a metallic gate as illustrated in Fig. 1 (a). The
electrostatic configuration has some similarity to that of
ordinary 2DEG, with the image charge playing a role sim-
ilar to that of the back ground dopant charge (see, e.g.,
Fig.1 of Ref. 8). As we will see later, the dimensionless
ratio d/lB (lB =

√

~c/eB is the magnetic length) con-
trols the stability of the Laughlin state in both cases.
However here the image charge moves with the elec-
trons (and thus enters the two-body interaction) while
the background charge is inert and provides the domi-
nant part of one-body confining potential. It also bears
some resemblance to that in Ref. 19, in which the im-
age charges from the dielectric media modify the form of
Coulomb interaction[20]. Here the effective interaction

between electrons contains their direct interaction in the
graphene layer and their interaction with image charge
on the other side of the metallic gate at a distance 2d
away:

V (r) =
e2

r
−

e2
√

r2 + (2d)2
. (1)

V (r) crosses over from 1/r at short distance to 1/r3 at
long distance around r ∼ d, and the significant pseudopo-
tentials (Vm) are those with m <∼ d/lB .
The one-body confining potential in graphene comes

exclusively from the existence of a boundary where the
electron wave function must vanish. In a semi-infinite
graphene sheet with an edge at x = 0 in a magnetic field,
the Dirac electron spectrum satisfies Dµ(−

√
2xc) = 0,

whereDµ(x) is the parabolic cylinder function, xc = klB,
k is wave vector parallel to the edge and µ = ǫ2/2; ǫ is
energy in units of ~vF /lB. The solutions give the energies
for the LLs in the presence of such a boundary [21]. In the
bulk, the solutions are µ = 0, 1, 2, · · ·, hence the energy
for the nth LL is ǫn =

√
2n. Close to the boundary, the

LLs are no longer flat. For a sufficiently large quantum
Hall droplet occupying Norb orbitals on a disk with the
edge at a radius rc =

√
2NorblB, we can recast the Dirac

solution as

Dµ[−
√
2(xc − rc/lB)] = 0. (2)

We note that the LL energies solved from the Dirac
equation are in units of ~vF /lB, while the electron
Coulomb interaction is in units of e2/lB (the choice of
energy unit from now on). In analogy to the definition of
the fine-structure constant α = e2/(~c) ∼ 1/137, we de-

fine the fine-structure constant for graphene αg = e2

~vF
=

e2/lB
~vF /lB

∼ 2.2. The largeness of the constant is due to

the speed of light being much larger than the graphene
Fermi velocity vF ∼ 106m/s. We feed the solution of the
lowest LL (LLL) energy at xc = rc/lB −

√
2m, scaled by

1/αg, as the edge potential on the m’th orbital Um in the
disk geometry. This results in the Hamiltonian

H =
1

2

∑

mnl

V l
mnc

+

m+lc
+
n cn+lcm +

∑

m

Umc+mcm, (3)

where c+m is the creation operator for an electron with
angular momentum m in the LLL, V l

mn is the interaction
matrix element calculated from Eq. (1).
Stability of Laughlin state for spin-polarized electrons.

– The Laughlin state is the exact zero-energy ground
state with a total angular momentum M = M0 =
3N(N − 1)/2 at ν = 1/3 for the hard-core potential with
V1 > 0 and Vm>1 = 0, in the absence of one-body (or
confinement) potential. Positive Vm>1, or the longer-
range components of the interaction, tend to spread out
the electron density (against confining potential) and in-
crease M for the ground state; this is the driving force



3

of edge reconstruction instability. Compared to that for
a realistic GaAs/AlGaAs 2DEG system with long-range
Coulomb interaction [4, 8] (hereafter referred to as the
GaAs case), graphene has a shorter-range interaction and
a different source of edge confinement potential. How-
ever, they share some common ingredients, e.g., a control
parameter d that dictates the electrostatic configuration.
Therefore, we expect that only for a finite range of d ∼ lB
can the Laughlin phase be stabilized, as in the case of
GaAs [4]. This window can be determined by examining
the total angular momentum M of the ground state and
its overlap with the Laughlin state.
In Fig. 1(b) we map out in the d-Norb plane the re-

gions in which the Hamiltonian has a global ground state
at M = M0 = 3N(N − 1)/2 (i.e., the same as Laugh-
lin state), for 5-10 electrons. The Laughlin regions first
rapidly shift to smaller d as Norb increases, and then level
off for d ∼ lB. Correspondingly, for large d the Laughlin-
like state exists for a very small range of Norb, while this
range gets significantly larger for smaller d. The high
sensitivity on Norb for larger d indicates that the ground
state with M = M0 = 3N(N − 1)/2 suffers from strong
finite-size effects, related to the fact that in such finite
size system the edge confining potential can also impact
the bulk region (near the center of the disc) strongly.
This point is supported by Fig. 1(c), where we replot the
regions by shiftingNorb toNedge = Norb−(3N−2), where
3N − 2 is the least Norb needed to support the Laughlin
state, in an attempt to separate out the sensitivity to the
system size. We find in such a plot the Laughlin regions
are dependent on system size for larger d, while they fall
on top of each other and show very weak size dependence
for (shaded region)

0.5lB <∼ d <∼ 1.5lB, (4)

indicating genuine stability of the Laughlin state in this
region [22]. Our conclusion is further supported by cal-
culating the overlap between the numerical ground states
with the Laughlin state itself. As is clearly visible in Fig.
1(d), the overlap is very small for large d, but rapidly in-
creases toward 1 as one approaches the stability window
of Eq. (4). Outside this window the Laughlin state suf-
fers from edge reconstruction instability, which results in
charge accumulation similar to that studied earlier based
on Hartree-Fock types of calculations[23].
The stability window of the Laughlin state, Eq. (4),

is quite similar to that of GaAs case modeled in Refs.
4, 8, 9, where a closely related parameter d character-
izes the distance between the 2DEG and the background
charge due to the ions. This is not an accident; the sta-
bility window is dictated by the very similar electrostatic
configurations of both cases. As discussed in detail in
Refs. 8 (see in particular its Fig. 1), the 2DEG and
its corresponding neutralizing positive ion charge form
a capacitor; the fringe field near the edge is the driving
force of edge reconstruction instability. Once d becomes
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FIG. 2: (Color online) Low-energy spectrum for 7 electrons
on (a) a sphere (Nφ = 18, d = 1.0lB) and (b) a disk (Norb =
26 and d = 1.8lB). The ground state is spin fully-polarized
on the sphere and partially-polarized on the disk. δE is the
energy gap between the ground state and the lowest energy
spin fully-polarized state.

large compared to lB which is the size of the LLL wave
function, such an instability occurs. Here the situation is
almost identical, with the capacitor formed by graphene
2DEG and the metallic gate. In GaAs d is typically of
order 1000 Å or more than 10lB (essential for high mobil-
ity), thus edge reconstruction is essentially unavoidable.
In graphene on boron-nitride, however, d can be as small
as a few nanometers or a small fraction of lB[12, 24]; as
a result the stability window (4) is within reach. We pre-
dict that in such a window edge reconstruction and other
related instabilities can be avoided, resulting in a single

chiral edge mode for the 1/3 FQH state. In this window
single electron tunneling[2, 5] will exhibit a non-linear I-V
characteristic I ∝ V α with a universal exponent α = 3,
as predicted by theory[1]. We note electron tunneling
into the bulk of graphene sheets have been performed
already using STM[25]; the same setup can be used to
probe edge state properties by simply moving the STM
tip to the edge.

Spin partially-polarized ground states. – We now
switch on the spin degrees of freedom. Earlier numerical
studies on torus [26] and sphere [27] indicate that elec-
trons at ν = 1/3 are fully spin-polarized with Coulomb
interaction, even in the absence of Zeeman splitting. Our
numerical calculation confirms that a system of 7 elec-
trons on a sphere with dipolar interaction has a ground
state with total spin S = 7/2, as shown in Fig. 2(a).
These results clearly suggest that we have a spin fully-
polarized ferromagnet in the bulk. The situation, how-
ever, can be more complicated at the edge. It was shown
[28, 29] that the ν = 1 quantum Hall ferromagnet can
support a spin texture at the edge. In the following we
show this can also happen for the 1/3 edge when the
Zeeman splitting is sufficiently small, and calculate the
magnetic field needed to fully polarize the edge.

We choose 7 electrons in 26 orbitals at d = 1.8lB as
an example, for which the ground state of spin-polarized
electrons is inside the Laughlin-like region as shown in
Fig. 1. Fig. 2(b) plots the low-lying energy spectrum
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FIG. 3: (Color online) (a) Zeeman energy necessary to fully-
polarize the ground state of 7 (6 for inset) spinful electrons
in the d-Norb parameter space. (b) The Zeeman energy and
the ground state total angular momentum for the 7 electrons
along the (green) dashed line in (a) (i.e., Norb = 26). (c),
(d), (e) and (f) plot the spin-resolved density profiles for 4
selected ground states in the 4 different spin regions in (b).

of the system, in the absence of Zeeman splitting. The
global ground state now has S = 5/2, indicating the
ground state is not spin fully-polarized. To fully polar-
ize the ground state, we need to apply a finite Zeeman
energy, which exceeds the energy difference per electron
between the two states: Ez ≥ δE/N = (Epolarized −
Egs)/N . Fig. 3(a) plots in color the minimum Zeeman en-
ergy required to polarize the ground state to be Laughlin-
like for systems of 6 and 7 electrons. In both cases we
find the required Ez ∼ 0.003e2/lB with essentially no size
dependence; this indicates both bulk and edge electron
spins are fully polarized for B >∼ 2 Tesla (with electron
spin g factor 2). In these cases results of the previous
section remain valid.

To reveal the nature of the spin partially-polarized
states (which can be stable at sufficiently low magnetic
fields), we fix Norb = 26 and vary d inside the Laughlin-
like region, indicated by the vertical (green) dashed line
in Fig. 3(a). As shown in Fig. 3(b), the total spin S
and the angular momentum Mgs for the ground state
both vary with d, indicating the interplay between edge
confinement and spin structure. Fig. 3(c)-(f) show the
spin-resolved density profiles of 4 ground states in the
corresponding regions distinguished by the ground state
spin S in Fig. 3(b). The total density profile for these
cases are almost identical. However, when the ground
state is partially polarized, the minority-spin electron(s)
(2 electrons for S = 3/2 and 1 for S = 5/2) form a ring-
like puddle along the edge; there is no electron with the
minority spin near the center. This clearly indicates the
reduction of polarization is due to spin texture forma-
tion at the edge, similar to that of ν = 1[28, 29]. These
edge spin textures, while eliminated by moderately high
magnetic fields and unfavorable for the universal edge

physics sought in this paper, are interesting in their own
right and deserve further study, in light of the current
experimental[29, 30] and theoretical[31] interest in spin
physics at quantum Hall edges.

In conclusion, we have demonstrated through de-
tailed numerical studies that edge reconstruction can be
avoided in an experimentally accessible parameter win-
dow for the ν = 1/3 graphene fractional quantum Hall
liquid, allowing for observation of universal chiral Lut-
tinger liquid behavior. It can also support interesting
edge spin textures that can be probed experimentally.
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