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The physisorption of atomic hydrogen on graphene is investigated quantum mechanically using
a semi-empirical model for the lattice dynamics. A thermally averaged wavepacket propagation
describes the motion of the H atoms with respect to the membrane. Two graphene configurations,
either supported on a silicone oxide substrate, or suspended over a hole in the substrate, are con-
sidered. In both cases, the phonon spectrum is modified in such a way that graphene is stabilized
with respect to thermal fluctuations. The sticking probabilities of hydrogen on these stabilized
membranes at 10 K is high at low collision energies, and larger than on graphite.
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Graphene, a two dimensional layer of carbon atoms,
has become the subject of intense investigations. Recent
reviews describe its unusual electronic, mechanical, and
thermal properties [1, 2]. We focus here on the sticking
of hydrogen atoms on graphene at low temperature (10
K). We show that the forces exerted on supported and
suspended graphene by the substrate not only stabilize
its two dimensional structure, but also modify H atom
sticking, which is enhanced relative to that on graphite.
Another motivation is the recent discovery of graphane,
obtained by hydrogenation of graphene under hydrogen
plasma exposure [3]. When an H atom chemisorbs onto
an unhydrogenated membrane, the carbon atom closest
to the H puckers out of the plane of the membrane [4, 5].
As a result, the chemisorption of H onto graphene has a
thermal activation of nearly 0.2 eV, and this hydrogena-
tion mechanism is not effective at room temperature and
lower. Under such conditions however, physisorption can
be efficient, as H atoms trap in the shallow potential well
[6] resulting from the weak van der Waals interaction be-
tween H and graphene. These trapped states might serve
as precursors to hydrogenation at edge or defect sites, or
adjacent to chemisorbed H atoms, where the barriers to
chemisorption are small. A third motivation is the recent
development of graphene based NanoElectroMechanical
devices (NEMS) used as mass sensors [7, 8]. Operated
at low temperatures, such devices are very sensitive de-
tectors of stuck atoms and molecules on the graphene
membrane through measurement of the shifts in its res-
onant vibrational frequency. This study is a prototype
of the general NEMS-atom or molecule sticking process
induced by van der Waals interactions. Understanding
the conditions under which sticking occurs is important
in the design and operations of such systems.

Sticking requires dissipation of the H atoms’ energy
into the lattice phonons, and an accurate phonon model
is necessary to describe this correctly. Previous studies
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FIG. 1: (Color online) Phonon dispersions for free stand-
ing (black), suspended (blue) and substrate supported (red)
graphene, near the Γ point and along the Γ−M direction in
reciprocical space. The reduced wavevector is the amplitude
of the wavevector, normalized to be 0.5 at the M point.

of hydrogen sticking on carbon surfaces [9–11] used mod-
els for (bulk) graphite phonons that can not accurately
describe the behavior of the low frequency phonons in
single layer graphene. We consider here only the acous-
tic modes of flexural type (labelled ZA), corresponding to
motion of the carbon atoms out of the membrane plane,
as they are the only ones to be significantly excited by
the incoming H atom. We use the semi empirical va-
lence force field model of Aizawa et al [12]. It relies
on two spring constants describing changes in the po-
tential due to deformation of the membrane. One char-
acterizes the displacement of each carbon atom out of
the plane formed by its three neighbors (γ = 2.11 eV),
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and one describes twisting (δ = 1.98 eV), similar to the
force making ethylene flat. This model has accurately
reproduced the measured phonon dispersion curves of
graphite mono-layers on several substrates [12], and is
in excellent agreement with first-principles calculations,
particularly for the low frequency modes important in
H atom sticking [13]. The dispersion relation for the
ZA branch obtained by diagonalization of the dynamical
matrix is shown in fig. 1. Using a first order Taylor ex-
pansion, a compact relation between phonon frequency
ω and wavevector norm Q can be derived close to the Γ

point : ω ≈
(

a4

48m

(

9γ
a2 + 12δ

a2

)

)
1

2

Q2, where a = 2.46Å is

the lattice parameter and m the carbon mass. The dis-
persion is therefore quadratic, as opposed to the usual
linear form ([14] and references therein). This unusual
dispersion compromises the stability of graphene as a
free standing two dimensional crystal [15]. This can be
shown by considering the thermal average of the rela-
tive displacement from equilibrium perpendicular to the
membrane plane < (ui − uj)

2 > of two atoms at sites
si and sj [16]. This quantity describes how order is pre-
served in the material over distance, and is proportional

to
∫

dωρ(ω)
(1−cos (Q(si−sj)))

ω2 , where ρ(ω) is the phonon
density of states, shown in fig. 2. Close to the Γ point,
ρ(ω) is non zero, as ρ(ω) = 2πQdQ

dω
∝ ω0. The inte-

grand is singular for ω = 0 and the relative deviation
< (ui − uj)

2 > diverges for all length scales. Thermal
fluctuations thus destroy order at any length scale [15].
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FIG. 2: (Color online) Phonon density of states for the 3
configurations considered in fig. 1. The density of states are
normalized such that the integral over energy is 1.

It is thus necessary to identify conditions under which
flat graphene is stabilized with respect to these thermal
fluctuations. One possibility is to support graphene on
a substrate, say a silicon oxyde layer. The weak van der
Waals interaction between graphene and an SiO2 sub-

strate has been measured to be ≈ 0.1 J/m2 [17] for an
average separation of ≈ 0.42 nm [18]. In the harmonic
approximation, this corresponds to a force constant ksub

= 0.4 N/m linking each carbon atom to the substrate
[17]. The modified dispersion relation now involves three
force constants and is shown in fig. 1. Close to the Γ

point, we have: ω2 ≈ ksub

m
+ a4

48m

(

9γ
a2 + 12δ

a2

)

Q4. The
presence of the substrate modifies the phonon dispersion
relation mainly near the Γ point in such a way that there
is now a non-zero minimum frequency for Q = 0. Even
with the resulting van Hove singularity in the density of
states for this minimum frequency (fig. 2), the expres-
sion for the relative deviation is now integrable. This
restores stability to the two dimensional crystal. It has
been confirmed experimentally that ultra flat graphene
can be obtained under such conditions [19].

Concerning free standing membranes, it has been sug-
gested that thermal fluctuations can be limited by an-
harmonic coupling between bending and stretching. Free
standing graphene would exist but would exhibit ripples
[15, 20]. It was then shown that the ripples could be
controlled by tuning the strain applied to the membrane,
which resulted from the differing thermal expansion co-
efficients of the graphene and the surrounding substrate
[21]. This suggests that the substrate plays a significant
role even in the case of ”free standing” graphene, and
for this reason, we prefer to call it ”suspended” graphene
in the following, reserving the term ”free” for the (un-
realistic) situation where there is no substrate. Exper-
imentally, flat suspended graphene can be obtained by
mechanical deposition onto a SiO2 layer patterned with
holes [22, 23]. Interestingly, graphene adheres to the ver-
tical walls of the holes over several nanometers because
of the van der Waals interactions between the membrane
and the substrate. This interaction can induce a strain
on the order of 1% and a biaxial stress σ in the sus-
pended membrane which can reach several N/m (but
which adds to a pre-tension which can be compressive).
We model this situation by adding a constant force σa,
exerted by each C atom on each of its 3 neighbors, to
the expression for the dynamical matrix. We choose
σ = 4 N/m for the bi-axial tension applied to the mem-
brane from its rim to be representative of experimental
conditions. The resulting dispersion relation for the ZA
branch is shown in fig. 1. Close to the Γ point we have:

ω2 ≈
√
3σa2

4m Q2 + a4

192m

(

36γ
a2 + 48δ

a2 −
√
3σ

)

Q4. The ap-
plication of tensile stress restores an approximately lin-
ear relation between the ZA phonon frequency and the
wavevector norm near the Γ point, proportional to σ.
The corresponding phonon density of states is shown in
fig. 2. It is proportional to frequency close to the Γ
point. This provides convergence of the integral involved
in the relative deviation < (ui − uj)

2 > and improves
the stability of flat graphene. Note that this result is ob-
tained within a purely harmonic phonon model, without
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the introduction of bending-stretching anharmonic cou-
plings. Note also that supported graphene is subjected
to stress and strain induced by lattice mismatch with the
underlying substrate, so that the stress stabilization ef-
fect described here in the suspended case should also be
efficient in the supported one [24].
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FIG. 3: Sticking as a function of the kinetic energy of the
incoming H atom perpendicular to the membrane. Both sus-
pended and supported (see fig. 1) configurations are consid-
ered.

We now describe a quantum model for the sticking of
hydrogen on supported and suspended graphene, based
on the close coupling wave-packet method [25, 26]. Our
Hamiltonian is H = Hs +Hb + Vc. Hs describes the in-
coming hydrogen atom and its interaction with a static
but corrugated membrane. Similar to the study of ref.
[10], our potential energy surface is fit to the MP2 ab-
initio calculations of ref. [27], and has a physisorption
well of 40 meV. Hb is the Hamiltonian of the harmonic
bath, supported or suspended graphene, as described
above. The system-bath coupling is a complicated func-
tion of the coordinates of the lattice atoms, given by their
displacements from equilibrium, ui, and the location of
the incoming particle, r = (R, z), where R = (x, y) is the
atom’s position projected onto the membrane plane, and
z is the atom’s distance above this plane. It is reasonable
to expand this to first order in the carbon displacements,
to get [11]:

Vc(r, {ui}) = D(z)
∑

Q

e
− 1

2

Q2

Q2
c ez(Q)

ω
1

2

Q

eiQR
(

aQ + a†−Q

)

(1)
D(z) is a decreasing function of z parametrizing the
strength of the coupling, Qc is related to the lateral ex-
tension of the interaction between hydrogen and carbon
atoms, aQ and a†−Q are phonon annihilation and cre-
ation operators, on which carbon atom displacements ui

are expanded. ez(Q) is the sum of the z-components of
the polarization vectors of both atoms in the elementary
unit cell. This function is nearly constant and equal to√
2 throughout the first Brillouin zone, except close to

its edge.

A wavefunction describing an atom incident on a sub-
strate is expanded in a product basis of nearly 2000
phonon states (necessary for convergence near the Γ
point) and 200 particle states describing the interac-
tion of the H atom with the corrugated rigid membrane.
These states are eigenfunctions of Hb and Hs respec-
tively. The coefficients in the expansion are solutions to
a set of time dependent first order differential equations.
Sticking probabilities are extracted after time propaga-
tion of a initially gaussian 0.9 meV wide wavepacket.
These probabilities correspond to H atoms irreversibly
trapped in the physisorption well. These trapped states
are characterized by two approximate quantum numbers:
v describes H vibration perpendicular to the membrane,
and the other gives the diffraction state for H motion par-
allel to the membrane (and restricted to 2 values here,
”g” for ground or ”e” for excited [11]). Our main approxi-
mation is the truncation of the phonon basis : only states
involving a difference of zero or one phonon with respect
to the initial occupation numbers are considered. This
is however appropriate here given the low mass, collision
energy and membrane temperature [11].
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FIG. 4: Sticking populations for individual H-graphene ad-
sorbed states, as a function of the incident H atom kinetic en-
ergy perpendicular to the membrane. Graphene is supported
on an SiO2 substrate. Each state has two labels. The first
is the vibrational excitation of H perpendicular to the mem-
brane, and g/e corresponds to the ground or excited diffrac-
tion state.

Fig. 3 shows total sticking probabilities as a function
of the incident hydrogen atom energy, summed over all
possible stuck states (v, g/e). This probability is high,
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reflecting an efficient energy dissipation mechanism, and
decreases with energy. As the collision energy increases,
higher frequency phonons are needed to absorb the en-
ergy, and it can be seen from eq. 1 that coupling is
then smaller. Low frequency phonons near the Γ point
therefore play an essential role in the process. The mod-
ifications made to our phonon model to limit thermal
fluctuations are also necessary for convergence of the
sticking probabilities. These sticking probabilities are
much larger than those of ref. [11], especially at low
energy. This is mainly due to the use of a different
model for the polarization vector in ref. [11], namely

ez(Q) =
(

sin
(

πQ
2Qmax

))
1

2

, which goes to 0 near the Γ

point. This corresponds to a Rayleigh mode for a thick
graphite slab that loses its surface character at lowQ [28],
and which obviously does not exist in the present two di-
mensional problem. This provides a vanishing coupling
at the Γ point and thus less efficient energy dissipation
by low frequency phonon excitation. By contrast, the
present ez(Q) remains almost constant (

√
2) near the Γ

point, leading to more efficient low frequency phonon ex-
citation and higher low energy sticking. Note that stick-
ing is slightly lower in the suspended case because the
phonon density of states is slightly reduced in the low
energy portion of the spectrum (see fig. 1 and 2).

The sticking probability does not decrease monoton-
ically throughout the entire energy range. For collision
energies near 7 meV and 15 meV, the H atom can be tem-
porarily trapped on the membrane in the excited diffrac-
tion states (v = 1, e) and (v = 2, e), respectively. This
trapping gives more time for the system to dissipate en-
ergy into the phonons and to relax from the (v = 1, e)
and (v = 2, e) states down to the (v = 0, e), enhanc-
ing sticking in the (v = 0, e) state near 7 and 15 meV.
This diffraction mediated selective adsorption [29] has
been studied for H on graphite [10, 11], and is illustrated
clearly in the state selected sticking probabilities of fig.
4 for the supported graphene case. In the absence of
resonances, individual populations are typically decreas-
ing functions of energy, though the (3,g) population is
small at low energy due to the absence of low frequency
phonons in the supported case (fig. 2).

In conclusion, we present harmonic phonon models for
suspended and supported graphene. We describe how
interactions with the substrate can limit thermal fluc-
tuations and stabilize flat graphene without assuming
anharmonic couplings between bending and stretching.
These suspended and supported graphene models were
used to study the sticking of hydrogen atoms on a 10K
membrane. We showed that sticking is efficient at low
energies (≤ 10 meV) due to the unusual nature of the
lattice vibrations. This suggests that sticking should be
enhanced at low collision energies for many other atomic
and molecular species on graphene-based NEMS oper-
ated at low temperature. These findings await experi-

mental verification.
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