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Exact three-body local correlations for excited states of the 1D Bose gas
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We derive an exact analytic expression for the three-body local correlations in the Lieb–Liniger
model of 1D Bose gas with contact repulsion. The local three-body correlations control the ther-
malization and particle loss rates in the presence of terms which break integrability, as is realized
in the case of 1D ultracold bosons. Our result is valid not only at finite temperature but also for a
large class of non-thermal excited states in the thermodynamic limit. We present finite temperature
calculations in the presence of external harmonic confinement within local density approximation,
and for a highly excited state that resembles an experimentally realized configuration.

PACS numbers: 67.85.-d,03.75.Hh,02.30.Ik,68.65.-k

When ultracold bosons are confined to move in only
one dimension (1D), they provide a very clean realiza-
tion [1–3] of a seminal exactly solvable model introduced
by Lieb and Liniger (LL) [4]. Being an integrable model,
it has a very special dynamics showing almost no relax-
ation in experiments [3]. This fact stimulated lots of the-
oretical interest in understanding of the thermalization
of isolated 1D systems and the role of integrability and
its breaking in this process [5–9]. In particular, it has
been shown [8, 10], that virtual excitations of bosons to
higher transverse modes of a confining potential result in
a weak three-body local interaction that violates integra-
bility of the many-body problem. Thus it is important to
understand three-body local correlations in the absence
of integrability breaking terms first. Such correlations
have also been measured recently using analysis of parti-
cle losses [11, 12], density fluctuation statistics [13], time-
of-flight correlation statistics [14], and scanning electron
microscopy [15]. They provide a very sensitive test of
coherence, and e.g. for Bose–Einstein condensates they
increase by a factor of 6 = 3! if the temperature is
raised to be much larger than the condensation tem-
perature [16, 17]. In spite of the LL model being inte-
grable, analytical calculation of its correlation functions
is notoriously hard [18]. Two-body local correlations in
equilibrium can be simply obtained using the Hellmann–
Feynman theorem and knowledge of exact thermodynam-
ics and show excellent agreement with experiments [19],
while three-body local correlations were analytically cal-
culated only at zero temperature in a remarkable tour de
force [20], as well as numerically in Ref. [21].

In this Letter, we exactly evaluate three-body local
correlations in the thermodynamic limit for a large class
of excited states which can be described by density ma-
trices diagonal in the energy representation. In particu-
lar, we apply our method at finite temperatures and for
highly excited states similar to the ones created in exper-
iments [3], and we take into account external harmonic
confinement within local density approximation (LDA).
We note that local two-body correlations in 1D play the
role of the “contact” introduced by S. Tan [22, 23]. Simi-
larly, three-body local correlations correspond to a three-

body contact which is being actively explored [24]. Our
exact results provide an important benchmark for such
theories, as well as for numerical methods for simulating
field theories in 1D [25].
The model.— The LL model describes a system of

identical bosons in 1D interacting via a Dirac-delta po-
tential. The Hamiltonian in second quantized formula-
tion is given by

H =

∫ L

0

dx
~
2

2m

(

∂xψ
†∂xψ + c ψ†ψ†ψψ

)

, (1)

where c > 0 in the repulsive regime we wish to study,
and m is the atomic mass. The dimensionless coupling
constant is given by γ = c/n, where n = N/L is the
density of the gas. We will express temperature T in
dimensionless units τ = T/TD, where TD = ~

2n2/(2mkB)
is the quantum degeneracy temperature.
The exact thermodynamics of the model can be ob-

tained via Bethe Ansatz [4, 18]. Each eigenstate of the
system with N particles on a ring of circumference L is
characterized by a distinct set of quantum numbers {Ij}
that are integers (half-integers) for N odd (even). The
wave function can be expressed in terms of N quasimo-
menta {pj} that satisfy a set of algebraic equations

Lpj +

N
∑

k=1

θ(pj − pk) = 2πIj , (2)

where θ(p) = 2 arctan(p/c). The wave function is iden-
tically zero if any two of the {Ij} coincide, which is
reminiscent of the Pauli principle for fermions. In the
Tonks–Girardeau (TG) limit c→ ∞, {Ij} correspond to
the quantum numbers of occupied single-particle states
of free fermions.
In the thermodynamic limit, if one wants to consider a

mixed state diagonal in the energy basis, this is achieved
by introducing a filling fraction 0 < fI < 1 in the space
of quantum numbers, which plays a role similar to the
occupation number of free fermions. All results of the
present letter are valid for fI which have a finite ther-
modynamic limit at constant I/N ; the limiting function



2

should be piecewise continuous and normalized. For cal-
culations, it is more convenient to define a function f(p)
in terms of the quasimomenta: denoting by ρ(p) the max-
imal allowed density of quasimomenta in the vicinity of
p, the quasimomenta density for a mixed state is given
by f(p)ρ(p).
Since all quasimomenta are coupled to each other by

Eq. (2), the density ρ(p) is not independent of f(p): it
satisfies the integral equation and normalization condi-
tion

ρ(p) =
1

2π
+

∫

dp′

2π
f(p′)ϕ(p− p′) ρ(p′) , (3a)

n =

∫

dp f(p) ρ(p) , (3b)

with the kernel ϕ(p) = 2c/(p2 + c2). In thermal equi-
librium, f(p) has to satisfy a set of nonlinear integral
equations [26, 27], but our results will be valid for more
general f(p).
Local correlations.— The local k-body correlation

functions are defined as

gk(γ, τ) =

〈

ψ†k(x)ψk(x)
〉

nk
. (4)

The first two of them are relatively easy to calculate:
g1 = 1, while g2 in equilibrium is given by the Hellmann–
Feynman theorem [19, 27].
Here we report the results for k = 2 and k = 3 for

general f(p), which can be written in terms of functions
hm(p) (m = 1, 2) satisfying the following integral equa-
tions:

hm(p) = pm +

∫

dp′

2π
f(p′)ϕ(p− p′)hm(p′) . (5)

In the case of g2 the final formula is

g2(γ, τ) =
2γ2

c3

∫

dp

2π
f(p)

[

2πρ(p) p2 − h1(p) p
]

, (6)

which agrees with the result of the Hellmann–Feynman
theorem for thermal equilibrium [27], but is more general.
Similarly, for k = 3 the final expression is given by

g3(γ, τ) =
γ3

c5

∫

dp

2π
f(p)

[

(p4 + c2p2)2πρ(p)−

(

4p2 + (1 + 2/γ)c2
)

p h1(p) + 3p2h2(p)

]

+

2γ3

c4

(
∫

dp f(p)ρ(p)p

)2

. (7)

In the case when f(p) is even, in equilibrium for example,
the last term in Eq. (7) is zero because the integrand is
odd in p. Both Eq. (6) and Eq. (7) are Galilean invariant
expressions [27]. In the following we will first consider an
equilibrium case and then will proceed to highly excited
states.
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FIG. 1: Local three-body correlator g3(γ, τ ) as a function
of dimensionless coupling γ = c/n for the uniform system
at fixed dimensionless temperature τ = T/TD, where TD =
~
2n2/(2mkB) is the quantum degeneracy temperature. The

inset shows the large γ asymptotic behavior on a log-log scale.

In Fig. 1 we plot the result in thermal equilibrium
for fixed τ as a function of the coupling γ. In partic-
ular, at zero temperature our result agrees with that of
Ref. [20], up to the precision of the numerical evalua-
tion of both expressions, ≈ 10−3. The behavior of g3 is
qualitatively similar to that of g2 analyzed in Ref. [19]
and it distinguishes three different physical regimes: (a)
γ & max(1,

√
τ), strong coupling (TG) regime, g3 ≪ 1;

(b) τ2 . γ . 1, quasicondensate regime, g3 ≈ 1; (c)
γ . min(τ2,

√
τ), decoherent regime, g3 ≈ 6. In the in-

set of Fig. 1 the large γ asymptotics are plotted together
with the analytic forms of Ref. [19]: g3 ∼ 16π6/(15γ6)
for τ = 0 and g3 ∼ 9τ3/γ6 for γ2 ≫ τ ≫ 1.

Harmonic traps.— Next we turn to the experimen-
tally more realistic case of atoms confined in a waveg-
uide with a harmonic longitudinal potential. The 1D
regime is reached if µ, kBT ≪ ~ω⊥, where µ is the
chemical potential and ω⊥ is the transverse oscillator
frequency [28]. If the density profile in the trap varies
smoothly, the correlations can be calculated by combin-
ing our exact results with LDA [29]. The relevant prop-
erties of the gas can be characterized by the LL coupling
γ0 and the temperature parameter τ0 at the center of
the trap. In Fig. 2 we plot the three-body correlator
g3(γ0, τ0) at the trap center and the normalized average,
g3(γ0, τ0) =

∫

dx
〈

ψ†3(x)ψ3(x)
〉

/
(∫

dxn3(x)
)

, against
the dimensionless temperature τ0 for different fixed val-
ues of γ0. Similarly to the results of Ref. [29] for the case
of g2, we find that unless the coupling γ0 is very small,
g3(γ0, τ0) ≈ g3(γ0, τ0) at any temperature.

The curves in Fig. 2 are related to the observed change
in time of the particle loss rate in Ref. [12]. With in-
creasing temperature, the three-body correlations grow
according to our result, which leads to a higher proba-
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FIG. 2: Local three-body correlators g3(γ0, τ0) averaged over
the trap (dots) and g3(γ0, τ0) in the center (solid lines), as
a function of the dimensionless temperature τ0 for fixed di-
mensionless coupling γ0 in the center of the trap. At high
temperature, g3 approaches the value 6 = 3!, reflecting Bose
statistics.

bility of inelastic three-particle processes which in turn
raises further the temperature of the gas. This positive
feedback causes a non-trivial dependence of the particle
loss on time, and a detailed analysis of heating mecha-
nisms is needed to describe the time dependences of the
loss rates.

Three-body correlations for highly excited states.—

Since Eq. (8) is valid for general distributions f(p) [30],
we can use our results (6),(7) in situations where the sys-
tem is neither in equilibrium nor is in its ground state.
We will illustrate this by considering a state which is mo-
tivated by the experiment of Kinoshita et al. [3], where
each atom was put in a momentum superposition state,
after which the two clouds performed many oscillations
without observable thermalization. The state created in
the experiment is not an eigenstate, and the harmonic
trap might play an important role. However, let us con-
sider here a simple “caricature” eigenstate which might
capture the behavior of g3, and hence the role of inte-
grability breaking, in these experiments. This state is
characterized by an f(p) consisting of two disjoint rect-
angular “Fermi steps” symmetric with respect to p = 0
at zero temperature: f(p) = θ(p2 − p21) − θ(p2 − p22)
with p2 > p1 > 0 (see inset of Fig. 3). We are inter-
ested in the dependence of gex3 (γ, p1) on the “inner Fermi
quasimomentum” p1. If p1 is fixed then the “outer Fermi
quasimomentum”, p2, is determined from the normaliza-
tion (3b). The momentum kick in Ref. [3] corresponds
to p1/c of order one. In Fig. 3 we plot gex3 (γ, p1) for
fixed values of γ as a function of p1. We find that the
correlations grow with the momentum of the kick and
they can become greater than 1. For large p1, the quasi-
momentum distributions of left and right goers become
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FIG. 3: Local three-body correlator gex3 (γ, p1) as a function of
p1 for different values of γ. The excited state is characterized
by the inner “Fermi quasimomentum” p1. The horizontal
dashed lines correspond to gex3 (γ,∞) = [g3(2γ) + 9g2(2γ)] /4.
The inset illustrates a typical quasimomentum density for γ =
1, p1 = 0.5c.

approximately independent of each other. However, to
obtain the correct limit as p1 → ∞ one needs to take
into account deviations of θ(2p1/c ≫ 1) in Eq. (3) from
π. This results in gex3 (γ,∞) = [g3(2γ) + 9g2(2γ)] /4; in
particular, gex3 (γ → 0,∞) = 5/2. Similarly, gex2 (γ,∞) =
[g2(2γ) + 2] /2, and gex2 (γ → 0,∞) = 3/2 [27].

Derivation of Eqs. (6) and (7).— In Ref. [31] a novel
method was proposed to calculate the gk correlators
based on the observation that the LL model can be
viewed as the combined non-relativistic, weak coupling
limit of the sinh–Gordon model. The resulting formula
reads as [30, 31]

gk =

∞
∑

s=k

1

s!

∫ s
∏

j=1

dpj
2π

f(pj) γ
kF (k)

s (p1, . . . , ps) , (8)

where the form factors F
(k)
s (p1, . . . , ps) are the infinite

volume s-particle diagonal matrix elements of the oper-
ator ψ†kψk, which can be obtained from known sinh–
Gordon form factors [32–34]. These series were investi-
gated previously by truncating them after the first few
terms [31]. Here we resum these series to all orders ob-
taining closed analytical expressions for the local corre-
lations.

It has been proven in Ref. [30] that

F (1)
s =

1

c

∑

P

ϕ(p12)ϕ(p23) . . . ϕ(ps−1,s) , (9a)

F (2)
s =

1

c3

∑

P

ϕ(p12)ϕ(p23) . . . ϕ(ps−1,s) p
2
1,s , (9b)

and based on evaluations performed in Mathematica for
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the first few F
(3)
s we conjecture

F (3)
s =

1

c5

∑

P

ϕ(p12)ϕ(p23) . . . ϕ(ps−1,s)×

1

2
p1,s

[

p31,s − (p312 + p323 · · ·+ p3s−1,s)
]

, (9c)

where pij = pi − pj and
∑

P denotes a sum over all
permutations of {pj}. Below we will illustrate how series
(8) can be analytically resummed for g2, and details of
similar calculations for g3 are presented in EPAPS [27].
We will use abbreviations d̃p = dp/(2π)f(p) and ϕij =

ϕ(pij). Using the symmetries of the integrand in Eq. (8),
we have for c3g2(γ, τ)/(2γ

2)

1

2

∞
∑

s=2

∫

d̃p1 . . .

∫

d̃ps ϕ12 . . . ϕs−1,s(p1 − ps)
2 =

∫

d̃p1 p
2
1

[
∫

d̃p2 ϕ12 +

∫

d̃p2

∫

d̃p3 ϕ12ϕ23 + . . .

]

−
∫

d̃p1p1

[
∫

d̃p1 ϕ12 p2 +

∫

d̃p2

∫

d̃p3 ϕ12ϕ23 p3 + . . .

]

=

∫

d̃p1 p
2
1 [2πρ(p1)− 1]−

∫

d̃p1 p1 [h1(p1)− p1] , (10)

where the terms in the first square bracket coincide with
the iterative solution of the integral equation (3a). Simi-
larly, comparison of the terms in the second bracket with
the iterative solution of Eq. (5) leads to h1(p1)−p1. Now
the second terms in the parentheses cancel each other and
we obtain Eq. (6).
In summary, we derived an exact formula for the local

three-body correlation in a paradigmatic system, the 1D
Lieb–Liniger Bose gas. Given that exact expression for
correlation functions are scarce even in integrable mod-
els, we emphasize the analytic nature of our result. Our
non-perturbative formula is valid at any temperature for
arbitrary value of the coupling γ, and for a large class
of excited states of the system. The result can open the
window to an analytic treatment of integrability break-
ing perturbations and thermalization in nearly integrable
systems.
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