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For a population with any given number of types, we construct a new multivariate Moran pro-
cess with frequency-dependent selection and establish, analytically, a correspondence to equilibrium
Lotka-Volterra phenomenology. This correspondence, on the one hand, allows us to infer the phe-
nomenology of our Moran process based on much simpler Lokta-Volterra phenomenology, and on
the other, allows us to study Lotka-Volterra dynamics within the finite populations of a Moran
process. Applications to community ecology, population genetics, and evolutionary game theory are

discussed.

The Moran process, originally formulated in the con-
text of population genetics [1], has been applied to a wide
range of systems in the biological sciences and statisti-
cal physics [2-6]. Multivariate Moran models prescribe
mean-field stochastic dynamics for birth and death in a
population with a fixed number of individuals and any
given number of types [5, 6]. The deterministic limit
yields replicator equations that model the evolution of
type frequencies in large populations [7-9]. For either the
multivariate Moran process or the corresponding replica-
tor equations, types might be alleles, as in the population
genetics of a single locus [1, 10, 11]; species, as in the neu-
tral theory of community ecology [12, 13]; or strategies,
as in evolutionary game theory [14-17]. Here, we build on
a previous study of frequency-independent selection [18]
to construct, for any given number of types, a new multi-
variate Moran model with frequency-dependent selection
and demonstrate, analytically, that the corresponding
replicator equations exhibit equilibrium Lotka-Volterra
phenomenology. The results presented here are distinct
from the well-known equivalence of S replicator equations
and S — 1 Lotka-Volterra equations [2, 19]. Furthermore,
our choice of frequency-dependent selection generates S
replicator equations with the equilibrium phenomenol-
ogy of S Lotka-Volterra equations. “Lotka-Volterra equa-
tions” in this context does not refer to the special case
of neutrally stable, two-species, predator-prey dynamics,
but rather to the general case of mean-field determinis-
tic dynamics for a population with any number of well-
mixed types and linearized density-dependent growth
rates [20]. These generalized Lotka-Volterra equations
are frequently used to model competitive dynamics in
ecological communities [21]. Indeed, the two-species case
may be the simplest dynamical system to exhibit the
niche mechanism for stabilizing coexistence, in which (i)
demographic rates must vary among species, (ii) abun-
dances for each species must increase when rare, and (iii)
intraspecific competition must exceed interspecific com-
petition [22]. By embedding Lotka-Volterra dynamics
within a multivariate Moran process, we obtain a theoret-
ical framework in which equilibrium Moran phenomenol-
ogy may be inferred from much simpler Lotka-Volterra
phenomenology, and Lotka-Volterra dynamics may be
studied within the finite populations of a Moran process.

This framework offers new insights on community ecol-
ogy, population genetics, and evolutionary game theory.

In a multivariate Moran process for S types and N
individuals, the allowed states are vectors of nonnegative
integers, @ = (n1,...,ng), such that 0 < n; < N for
each ¢ and Zle n; = N. The allowed transitions are a
single death event immediately followed by a single birth
event in order to maintain a total of IV individuals. In
the absence of selection, i.e. the neutral limit, per capita
rates of birth and death are equivalent. If we ignore
mutation and migration, the neutral transition rate for
a death event in Type ¢ immediately followed by a birth
event in Type j is simply
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where only N — 1 individuals are present after the death
of 7 and prior to the birth of j. Dynamics are governed by
a multivariate master equation that we can write as [18]
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where Py is the probability of state i, €; is a unit vector,
and 7 is a dimensionless measure of time. The ©;;7 =
O(N —(n;+1))O(n; —1), where O(z) = 0, for z < 0, and
1 otherwise, eliminate transitions to non-allowed states.
The stochastic process contains S absorbing states where
a single species dominates such that n; = N for some i.
The more familiar univariate Moran process is obtained
from the marginal dynamics of Eq. 2 [18].
For S types, the Lotka-Volterra equations can be writ-
ten as
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where z; = x;(7) is the density of Type ¢ and
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is a density-dependent growth rate parameterized by r;,
the intrinsic growth rate of Type i in the absence of all



others, and a;;, the additive per capita impact of Type j
on the growth rate of Type i. We focus for now on com-
petition among types such that r; > 0 and a;; > 0 for all
7 and j. In community ecology, the a;; are referred to as
“intraspecific competition strengths” and the a;;, with
i # j, as “interspecific competition strengths”. With-
out loss of generality, we can re-scale the Lotka-Volterra
equations such that
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and if a coexisting fixed point, &, exists, with z/* > 0
for all 7, then

; (5)
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With these preliminaries, we first construct a new
multivariate Moran process and then establish a cor-
respondence to equilibrium Lotka-Volterra phenomenol-
ogy. For the construction phase, we seek frequency-
dependent selection coefficients similar in form to the
density-dependent growth rates of the Lotka-Volterra
equations but remaining nonnegative for all states and
parameter values. Towards this end, the growth rates
of a Ricker model [23] inspire our choice of frequency-
dependent selection coefficients
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and we expand on Eq. 1 to impose the transition rates
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where various subtractions account for the death of Type
i prior to the birth of Type j. In the context of popu-
lation genetics, the w;z are reproductive fitnesses, and
the multivariate Moran process of Eq. 2 with the transi-
tion rates of Eq. 8 provides a framework for multiallelic,
frequency-dependent selection that is not limited by the
usual assumptions of weak selection or symmetry under
the exchange of alleles [24]. Symmetry under exchange-
ability only obtains in the neutral limit where Eq. 8 re-
duces to Eq. 1 for r; = r} and aj; = 1/ for all i and
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The deterministic limit of Eq. 2, with the transition
rates of Eq. 8, is given by
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where 7" = 7/N. A simplification is obtained in the case
of weak asymmetries where
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for every i, j, and fi. “Weak asymmetries” in our multi-
variate Moran process are similar to “weak selection” in a
univariate Moran process [2, 11], but due to the weighted
sums over ny that appear in Eq. 10, our asymmetry re-
quirements depend on population size, N, as highlighted
below in the discussion of Fig. 2. If we assume suffi-
ciently weak asymmetries, and if we transform variables
from densities, n;, to frequencies, p; = n;/N, Eq. 9 can
be approximated by the replicator equation

352 ~ pi(ci(p) = 1), (11)

where the replicator fitness is

w; ()
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and w;(p) is defined by Eq. 7 upon substituting pi N for
ng. The mean replicator fitness is unity at all times, and
therefore, never decreases - a standard requirement of
replicator dynamics [2].

To establish a correspondence to equilibrium Lotka-
Volterra phenomenology, we note that a coexisting fixed
point for the Lotka-Volterra system of Eq. 3 is also a
coexisting fixed point for the replicator system of Eq. 11

ci(p) = (12)
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But in addition to this identity, we find a correspondence
in stability: if the matrix with elements given by a;j +

a;» is positive definite, then the coexisting fixed point

K3
is globally stable in the Lotka-Volterra system and at
least locally stable in the replicator system. The proof
for any given number of types employs the well-known
Lyapunov function for Lotka-Volterra dynamics [25, 26]
(see Supplemental Material). In the special case of S = 2
competition, if r{ab; < rhal; and rhal, < riab,, then the
replicator and Lotka-Volterra equations share a stable
coexisting fixed point and each type can invade when
rare. The latter inequalities, which imply that aj,ab; <
ay ab,, quantify the three requirements of niche theory
that were highlighted in the introduction.

To illustrate how Lotka-Volterra phenomenology can
facilitate inference on our multivariate Moran process,
we consider a two-type population where Eq. 2 can be re-
written as a univariate birth-death process [18, 27] with
rates of gain and loss given by

ny — ].)) ’

b — N —ny ( Wi7—gN1
o N Wig—gN1 + War—gy (N —
nl)) 7
(14)

d n ( wai—z (N —nq)
! W1i 61(

"N —a(n1 — 1) + war—g (N —



Neutral Limit

Destabilized Coexistence

Stabilized Coexistence

1.0

Frequency, ny /N
o o o
H )] [o]

o
[}

0.0

x10

0 1 2 3 4 5 x10® 0 1 2 3
Time, 7

Time, 7

4 5 x10® 0 1 2 3 4 5 X0
Time, 7

FIG. 1: Plots of the integrated marginal distribution for Type 1 in a two-type population after conditioning against extinction

and dominance, Py (7) = P, (7)/(1 — Po(7) — Pn(7)).

For all plots, N = 100, i = r5 = 0.5, and the initial condition

is Py/o(T = 0) = 1. The panels correspond to scenarios of (a) neutrality (ai; = a3 = aj = ajy = 0.5), (b) interspecific
exceeding intraspecific competition (ab;,als = 0.52 > al;, a5, = 0.48), and (c) intraspecific exceeding interspecific competition

(a51,a12 = 0.48 < afy a3 = 0.52).

At long times, the conditional probabilities approach quasi-stationary distributions

with shapes anticipated by the stability of the coexisting Lotka-Volterra fixed point which is (a) neutrally stable (half-filled
semicircle), (b) unstable (empty semicircle), and (c) stable (filled semicircle).

and 7 = (n1, N — ng). Starting from a known ini-
tial abundance, Fig. 1 integrates the marginal distribu-
tion of Type 1 conditioned against extinction and dom-
inance. We consider three cases: a) the neutral limit,
b) destabilized coexistence due to interspecific exceeding
intraspecific competition, and c¢) stabilized coexistence
due to intraspecific exceeding interspecific competition.
The quasi-stationary distribution emerging at long times
is (a) flat, (b) peaked at extinction and dominance, or
(c) peaked at coexistence. In the corresponding Lotka-
Volterra equations, the stability of the coexisting fixed
point at ny/N = 0.5 allows us to infer the shape of the
quasi-stationary distribution with (a) neutral stability
linked to a flat distribution, (b) instability linked to a
local minimum, and (c) stability linked to a local maxi-
mum [27]. As N becomes large, fluctuations become rare
and the peaks in Figs. 1b and 1lc approach delta func-
tions. If we interpret Fig. 1 in the context of diploid
population genetics, we find that interspecific exceed-
ing intraspecific competition yields a scenario of “un-
derdominance” (Fig. 1b), in which selection favors ho-
mozygous over heterozygous populations, and intraspe-
cific exceeding interspecific competition yields a scenario
of “overdominance” (Fig. 1c¢), in which selection favors
heterozygosity [10]. The Supplemental Material provides
predator-prey and multi-type examples to further illus-
trate the use of Lotka-Volterra dynamics to anticipate
the phenomenology of our multivariate Moran process.
For the multi-type example, Moran dynamics are simu-
lated with the Gillespie algorithm [28] as implemented in
the Python package StoMPy [29].

But we also need to consider cases where the assump-
tions of Eq. 10 break down, and the correspondence
between Moran process and Lotka-Volterra system no
longer holds. Fortunately, in this regime, the Moran pro-
cess remains valid for strong asymmetries and allows us
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FIG. 2: A plot of fixation rate, R, as a function of the number
of individuals, N, in a two-type population where rj = r, =
0.5, ais = 0.52, and ah, = 0.52 (light grey), a5, = 0.56
(dark grey), or a5; = 0.58 (black), with a}; = 1 — a5, and
ahs = 1 — als. Type 1 is always excluded as N — oo, but for
sufficiently small N, the a5, > a’}, asymmetry is sufficiently
strong that frequency-dependent selection yields fixation rates
above the neutral limit (dashed line).

to study Lotka-Volterra dynamics within finite popula-
tions. As an example, consider fixation rates, or the ex-
pected rate at which individuals of a given type grow to
dominate a population given a fixed rate of repeated in-
troduction. In a two-type population, the fixation rate
of Type 1 is given by [16]
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in our nondimensionalized time units. For large pop-
ulations that satisfy the weak asymmetry requirements
of Eq. 10, fixation rates are vanishingly small when



rhaly > riah,, and as expected from Lotka-Volterra dy-
namics, Type 1 cannot invade Type 2. However, in
the stochastic dynamics of small populations with strong
asymmetries, the introduction of a single individual of
Type 1 can disproportionately impact the fitness of Type
2 if a4y > a},. For three different values of abh; — af,,
Fig. 2 plots fixation rates against population sizes in a
scenario where rhaly > riaby,. When af; — ajy > 0,
fixation rates lie above the neutral limit of R = 1 for
sufficiently small populations. Therefore, in our multi-
variate Moran process, strong asymmetries in finite pop-
ulations can favor invasion even when the corresponding
Lokta-Volterra system for an infinite population predicts
exclusion.

We conclude by discussing two applications of our
framework for merging Moran and Lotka-Volterra dy-
namics. In community ecology, the past decade has
witnessed an enormous interest in predicting large-
scale abundance distributions based on neutral models
for individual interactions. The foundational work of
Caswell [12] and Hubbell [13] applied the neutral Moran
models of population genetics to competitive ecological
communities, such as the canopy trees in a tropical for-
est where light-gaps are quickly filled and the total num-
ber of individuals may be approximated as a constant.
For these models, types correspond to species and ge-
netic variation within each species is ignored. Efforts to
determine the relative importance of deterministic niche
dynamics and stochastic neutral dynamics in structuring
ecological communities have been limited by the lack of
a common analytical framework. Fortunately, by adding
mutation or migration to the transition rates of our mul-
tivariate Moran process, where selection occurs on the
level of species rather than alleles in this context, we can
unify Hubbell’s formulation of neutral theory [13] with
niche theory [22]. In particular, with the addition of a
small mutation rate, the deterministic limit of our multi-
variate Moran process yields a replicator-mutator equa-
tion [16, 17] exhibiting equilibrium Lotka-Volterra phe-
nomenology up to small corrections. This non-neutral

framework, in which niche stabilization can delay ex-
tinction, offers a simple solution to Hubbell’s problem
of short species lifetimes [13].

Merging Moran and Lotka-Volterra dynamics is also
relevant to evolutionary game theory. Indeed, Fig 2 is
reminiscent of results in Nowak et al. [30] for a univariate
Moran process with frequency-dependent selection that
models evolutionary games in finite populations. Their
definition of reproductive fitness can be mapped onto
a first-order expansion of Eq. 7 if we now assume that
r; < 0 and a;; < 0 for all ¢ and j. In this regime,
the equilibrium phenomenology of our re-scaled Lotka-
Volterra and replicator equations matches the usual ex-
pectations for two-strategy games, such as the Prisoner’s
Dilemma [31] and Repeated Prisoner’s Dilemma [30, 32],
given r; = 19 and payoff matrix

Strategy 1 Strategy 2

—a2 ) (16)
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Our multivariate Moran process with frequency-
dependent selection provides a general framework for
modeling the stochastic dynamics of evolutionary games
with any given number of strategies in a finite popula-
tion.
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publisher] for predator-prey and multi-type examples.
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