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ABSTRACT 

    The thermoelectric figure of merit (ZT) in narrow conduction bands of different material 

dimensionalities, with a bandwidth of several TkB , is investigated for different carrier 

scattering models. When the bandwidth is close to zero, the transport distribution function is 

indeed finite, not infinite as previously speculated by Mahan and Sofo [Proc. Natl. Acad. Sci. 

USA 93, 7436 (1996)], even though the carrier density of states goes to infinity. Such a finite 

transport distribution function results in zero electrical conductivity and thus zero power 

factor and zero ZT. We point out that the optimal ZT cannot be found in an extremely narrow 

conduction band. The existence of an optimal bandwidth for maximum ZT depends strongly 

on the scattering mechanisms and the dimensionality of the material. A nonzero optimal 

bandwidth for maximizing ZT is also dependent on a dimensionless parameter which is 

proportional to the lattice thermal conductivity. Larger maximum ZT can be obtained for 

materials with smaller lattice thermal conductivity. Our results could provide a useful guide 

for searching for high efficiency thermoelectric materials. 
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   Recently, there has been an increasing interest in using thermoelectrics (TE) for 
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solar-thermal applications, waste heat recovery and thermal management of electronics 

[1,2,3]. The efficiency of a solid-state TE device for power generation and electronic 

refrigeration is determined by the figure of merit (ZT) of the material [4]:  

                                TSZT
pe κκ

σ
+

=
2

,                           (1) 

where σ  is the electrical conductivity, S is the Seebeck coefficient, eκ  is the electronic 

thermal conductivity, pκ  is the lattice thermal conductivity, and T is the absolute 

temperature. Searching for high ZT materials is essential in TE power generation and 

refrigeration. One way to increase ZT is to reduce pκ  without significantly changing the 

electronic transport properties [5,6,7,8]. Another way is to maximize the power factor for a 

given pκ  through optimizing the electronic band structure of the material. The original 

theoretical work by Mahan and Sofo [9] showed that an electronic structure with a 

delta-shaped transport distribution function (TDF) leads to a maximum ZT. Many of the band 

structure engineering works for TE materials over the past decade have somewhat followed 

this guideline by introducing a sharp density of states (DOS) [10,11,12,13,14], including the 

search for rare-earth compounds and transition-metal compounds [15,16,17], introducing 

impurity levels in bulk semiconductor materials [18], and the nanostructured materials with 

low-dimensional miniband formation [1,19]. 

Though mathematically rigorous, Mahan and Sofo also noted in their original paper [9] 

that the exact delta-shaped TDF cannot be found in real materials due to the 

energy-dependent relaxation time and carrier velocity. It is therefore very meaningful to 

re-investigate what is the best electronic structure of materials to maximize ZT when 

scattering physics of carriers is considered. In this letter, we study TE transport properties in a 
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narrow conduction band with a bandwidth on the order of TkB , where Bk  is the Boltzmann 

constant, for different scattering models in different dimensionalities of the material.  

Without losing the generality, we start our study using the nearest-neighbor tight-binding 

model in one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) systems 

with a lattice constant a. The lattice points of these generalized systems could be quantum 

dots (QDs), rare-earth atoms, or transition metal atoms. The quantum-confined electrons in 

QDs (or f-electrons in rare-earth elements, d-electrons in transition metal elements) could 

transport between the nearest-neighbor lattice points. Depending on the dimensionality, the 

dispersion relation )(kαE  for these quantum-confined carriers can be written as:  

                     akJE xcos2)( 1DD1 −=k ,                               (2a) 

                     )cos(cos2)( 2DD2 akakJE yx +−=k ,                      (2b) 

                     )coscos(cos2)( 3DD3 akakakJE zyx ++−=k ,               (2c) 

where the subscript for the dimensionality 3D and 2D,1D,=α  and ),,( zyx kkk=k  is the 

wave vector of a carrier. Here, the bandwidths are 1DD1 4JW = , 2DD2 8JW = , and 

3D3D 12JW = , where αJ  is the coupling constant which is usually on the order of a few meV. 

When the quantum-confinement potential goes to infinity, both the coupling constant and the 

bandwidth become zero for a fixed lattice constant. 

By solving the linearized Boltzmann equations within the relaxation time approximation, 

the TE transport properties are related to the TDF )(EαΞ  as: 
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where 2and,1,0=i , E is the energy of carriers, μ  is the chemical potential, e is the carrier 

charge, and 1/)(
0 ]1[ −− += TkE Bef μ  is the Fermi-Dirac distribution. )(EαΞ is related to the 

band structure and the scattering physics as [9]:  

                    ∑ −=Ξ
k

kkk )]([)()(2)( 2
, αααα δτ EEvE x ,                    (4) 

where )sin(2)(1)(, akaJ
k

Ev x
x

x
αα

α =
∂

∂= kk , )(kατ  is the relaxation time of carriers, the 

factor 2 comes from the spin degeneracy, and  is the Planck constant. 

 We now consider the four different scattering models in common use for the carrier 

relaxation time where an isotropic one ))(()( kk ααα ττ E=  is assumed. We note that the 

results for other scattering models beyond these four models, such as 

2/12/12/3 and,,~)( −EEEEατ , could also be obtained similarly. The calculated TDF )(EαΞ  

are shown in Table I: 1). )(Eατ  is inversely proportional to the broadening of the energy 

EΔ  which is about the bandwidth αW  when TkE B<<Δ , according to the uncertainty 

principle; 2). constant relaxation time 0,)( αα ττ =E  which is widely used for TE transport 

property calculations [ 20 ]; 3). )(Eατ  is inversely proportional to the carrier DOS 

)()( 1 ENCE −= ααατ , where αC  is a constant and the DOS is defined as 

ααα δ WEEEN /1)]([2)( ∝−= ∑k
k . This model has been often used for calculating the 

transport properties of rare-earth compounds [9]; and 4). )(Eατ  is proportional to a constant 

carrier mean free path (MFP) αl , i.e., )(/)( EvlE ααατ = , which is widely used in narrow 

band conduction calculations [21,22]. Here ααααα WEEvEv ~)(1))(()( kk k∇== . Detailed 

derivations can be checked in Density of States and Transport Distribution Function [23].  

Let us look at the case for an extremely narrow band first. When 0→αW , the DOS is 

infinite since αα WEN /1~)( .  However, the TDF )(EαΞ  in Table I is always finite when 
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we consider different carrier scattering possibilities even though the DOS is infinite. This is 

very different from Mahan and Sofo’s hypothesis [9] which assumes an infinite delta-shaped 

TDF. Such an infinite delta-shaped TDF can never hold in nature since it requires 

2/1~)( αατ WE  [24], which cannot be found with known scattering models. Mathematically, 

for finite )(EαΞ , all the transport coefficients iW
L ,0

Lim α
α →

 in Eq. (3) must go to zero, which 

results in 0=αZT . Only infinite )(EαΞ  can lead to nonzero iW
L ,0

Lim α
α →

 because the integral 

limit in Eq. (3b) is from 2/αW−  to 2/αW . In short, the TE power factor and ZT for an 

extremely narrow band is zero due to the finite TDF when the scattering mechanisms are 

considered explicitly rather than being optimized by a speculated infinite TDF [9]. 

 After substituting the TDF )(EαΞ  shown in Table I into Eq. (3), the ZT expression in 

Eq. (1) can be re-written as: 

αααα

αα
α γ+−

=
0,

2
1,2,

0,
2
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/
/

ZT
PPP
PP

,                       (5) 

where the dimensionless integrals iP ,α  the dimensionless factors αγ  strongly depend on the 

scattering physics. αγ , which is proportional to pκ , is listed in Table II. iP ,α  can be written 

out depending on the scattering physics. ∫− −=
2/

2/

2/1
, ))(()(α
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i
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uncertainty principle and the constant relaxation time models, 
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i bxxsdxIP  for the constant carrier MFP model. We have rescaled all 

the energy-related variables by TkB  for the above expressions with TxkE B= , TkwW Bαα = , 

ααξ wx /= , TbkB=μ , and 2)1(
)(

+
= −

−

bx

bx

e
exs .  

Physically, large ZT can be obtained with a small αγ , i.e., a low pκ . This is consistent 
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with the efforts in the TE community trying to reduce pκ  through alloying and 

nanostructuring [1,7,8]. We first calculate the ZT with the constant carrier MFP scattering 

model. In our calculation, we make some simplifications to generalize the dimensionless 

factor αγ  in order to compare ZTs between 1D, 2D and 3D systems. We assume all the 

carrier MFPs are the same, i.e., 03D2D1D llll === , and Gaa ppp === ,3D,2D,1D / κκκ , where 

G is the thermal conductance across each lattice point. Then 2/01D γγ = , 02D 2γγ = , and 

03D 32 γγ =  where 
Tkl

aG

B
2

0
0 =γ . Using typical values of a (~0.5nm for d- or f-electrons, 1~5 

nm for QDs) and 0l  (~10nm) and pκ  in good bulk TE materials is 0.2-3 W/mK [25], we 

estimate the value of 0γ  to be 0.01~1 at room temperature.  

    Figures 1(a)-1(c) show the dependence of αZT  on the chemical potential 2/αμ W− , 

where we choose the upper band edge ( 2/αW ) as reference point, and the bandwidth αW  

when 06.00 =γ  for the 1D, 2D and 3D systems. It should be pointed out that our model is 

valid only for narrow band conduction when the bandwidth is on the order of several TkB . 

Therefore, we do not present the data for large bandwidths over TkB10  since the results 

would then be inaccurate. As expected, when the bandwidth 0→αW , αZT  goes to zero due 

to the finite TDF discussed above. In the 1D system, no obvious optimal point but an optimal 

ridge is found to maximize 1DZT  to be 6.4 when TkW B2~1D−μ  and TkW B4.21D > . This 

is due to an energy-independent TDF π/2 01D l=Ξ . In this case, only the carriers which are 

close to the upper band edge (close to the chemical potential) contribute to the electronic 

transport. When the bandwidth increases, the contribution from this part changes very little 

for the energy-independent TDF and the carriers close to the lower band edge do not 

contribute to the transport. It is very different in the 2D and 3D systems since the TDF are 
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energy dependent. The maximum 2DZT  in Fig. 1(b) is found to be 3.5 with 

TkW B5.1~2/2D−μ  and the bandwidth TkW B5.3~2D  in the 2D system and the maximum 

3DZT  to be 2.3 with TkW B~2/3D−μ  and the bandwidth TkW B5.4~3D  in the 3D system. 

We find that the optimal bandwidth should be smaller for the lower dimensional materials 

and the maximum ZT is higher when both the carrier MFP and the thermal conductance G are 

assumed to be constants in different dimensionalities. We also compare the 3DZT  in the 3D 

system for different 0γ  values in Figs. 1(c) and 1(d). We find that the maximum 3DZT  

decreases from 2.4 to 1.6 and the corresponding optimal bandwidth shifts to a slightly higher 

value when 0γ  changes from 0.06 to 0.1. From Figs. 1(c) and (d), we can see that it is 

essential to minimize the dimensionless factor 0γ , i.e., reduce pκ , for high 3DZT  even if 

the electronic band structure is optimized. Now if we choose W/mK2.03D, =pκ  which is a 

rather small value for pκ  in semiconductors [25], one needs 16.0/ 0
2 =la nm at room 

temperature to make 06.00 =γ . If we further assume the carrier MFP 100 =l nm which is 

common in semiconductors, the lattice constant should be smaller than 1.3 nm.  

Figures 2(a) and (b) show the dependence of the maximum ZT on the bandwidth with 

different 0γ  values when 2/2DW−μ  is fixed to TkB2  in a 1D system and when 

2/3DW−μ  is fixed to TkB  in a 3D system which are the optimal chemical potentials for 

the maximum ZT value we found from Fig. 1. In the 1D system, due to the energy 

independent TDF, we found that there is an individual optimal bandwidth to maximize 1DZT  

for each 0γ  only when 1.00 ≤γ . The optimal bandwidth increases with an increase of 0γ . 

When 1.00 >γ , the maximum 1DZT  does not depend on the bandwidth for TkW B31D > . In 

the 3D system, there always exists an optimal bandwidth for the maximum 3DZT  due to the 
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energy dependence of the TDF. The optimal bandwidth should be larger for larger 0γ  (larger 

pκ ). A larger 0γ  also results in a lower maximum 3DZT . To obtain a 3DZT  larger than 1 

which is the value for current commercial TE materials, i.e. Bi2(1-x)Sb2xTe3 alloy [26] near 

room temperature, 0γ  should be smaller than 0.14. At room temperature, the optimization 

requires 2
0

3D,
nm076.0W/mK1

a
l

p
××<κ . There have been a lot of attempts in reducing pκ  

in 3D materials using nanostructuring approach to enhance 3DZT [6,7,8]. This inequality for 

3D,pκ  essentially estimates the requirement on pκ  which makes 3DZT  over 1.  

    Figure 3 compares 3DZT  for the three different scattering models. In the calculation, we 

choose ps1.00,3D =τ  for the constant relaxation time model, 334
3 s/Jm10=DC  which leads 

to an average relaxation time around 0.1 ps for the 1DOS−∝τ  model, and nm103D =l  for 

the constant MFP model [27]. We also choose K300=T , W/mK2.0=pκ , nm1=a , and 

TkW B=− 2/3Dμ . We note that the uncertainty principle model is not valid when the 

bandwidth is larger than TkB . We thus do not plot 3DZT  for the uncertainty model in this 

figure. Apparently, the optimal bandwidths for obtaining the maximum 3DZT  depend 

strongly on the relaxation time models. The optimal bandwidth for the maximum 3DZT  is 

found to be TkW B4~3D  for the constant MPF model with a maximum 3DZT = 3.4 and 

TkW B8~3D  for the constant relaxation time model with a maximum 3DZT = 2.2. When 

1DOS−∝τ , 3DZT  always increases with the bandwidth 3DW . In Fig. 3, we further show the 

effect of an additional constant background TDF bgΞ to the TDF of narrow conduction band 

( bg3D3D )()( Ξ+Ξ→Ξ EE ) for the constant MFP model. We find that zero 3DZT  remains 

when bandwidth is zero since the Seebeck coefficient is zero. The optimal bandwidth shifts to 

a lower value and the maximum 3DZT  would be smaller than 1 when )0(045.0 3Dbg Ξ>Ξ . 
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    In summary, we have calculated the thermoelectric figure of merit ZT by using the 

nearest-neighbor tight-binding model with different scattering physics for carrier relaxation 

time in 1D, 2D and 3D systems. When the bandwidth is close to zero, the transport 

distribution function is indeed finite, not infinite as previously speculated [9], even though 

the carrier density of states goes to infinity. Such a finite TDF results in zero electrical 

conductivity, power factor and ZT. We point out that the optimal ZT cannot be obtained in an 

extremely narrow conduction band. The existence of the optimal bandwidth for maximizing 

the ZT depends highly on the carrier scattering mechanisms. There exists an optimal 

bandwidth for a maximum ZT within the constant carrier MFP approximation or constant 

relaxation time approximation. If the carrier relaxation time is inversely proportional to DOS, 

no optimal bandwidth exists for achieving a maximum ZT. A nonzero optimal bandwidth for 

maximizing ZT is also dependent on a dimensionless parameter which is proportional to the 

lattice thermal conductivity. Our results could provide a useful guide for searching for high 

efficiency thermoelectric materials. 
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Table I. TDF for the four scattering models: uncertainty principle; constant relaxation time; 

relaxation time inversely proportional to the DOS; and constant carrier MFP, where 

ααξ WE /= . 

Scattering 

Model 
)(Eατ  )(D1 EΞ  )(D2 EΞ  )(D3 EΞ  

Uncertainty 

principle 
αW/  )( 1D

1/2
1D ξIa  )(

4
1

2D
1/2
2D ξI  )(

12
1

3D
1/2
3D ξI

a
 

Constant τ  0,ατ  )( 1D
1/2
1D2

0,1D1D ξ
τ

I
aW
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4 2D

1/2
2D2
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τ

I
W

 )(
12 3D

1/2
3D2

0,3D3D ξ
τ

I
a

W
 

1DOS−∝τ  )(1 ENC −
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)(
)(
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1D
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1D

2

22
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ξ
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)(
)(
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2D

2

22
2D

2D ξ
ξ
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)(

36 3D
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1/2
3D

2

22
3D
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ξ
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MFP 
)(/ Evl αα  )(2

1D
0
1D

1D ξIl  )(
2 2D

0
2D

2D ξI
a

l  )(
32 3D

0
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Table II. Dimensionless parameters αγ  for different scattering models. 

Scattering Model D1γ  D2γ  D3γ  

Uncertainty principle  Tak
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                              Figure Captions 

FIG. 1 (Color online) ZT plotted as functions of the chemical potential with respect to the 

upper band edge as reference 2/αμ W− , and of the bandwidth αW  in (a) the 1D system 

when 06.00 =γ , (b) the 2D system when 06.00 =γ , (c) the 3D system when 06.00 =γ , and 

(d) the 3D system when 1.00 =γ . 

 

FIG. 2 (Color online) ZT plotted as a function of the bandwidth αW  in (a) the 1D system and 

(b) the 3D system when 06.00 =γ , 0.1, 0.14, and 0.18. The calculations use 

TkW B22/1D =−μ  for the 1D and TkW B=− 2/3Dμ  for the 3D system. 

 

FIG. 3 (Color online) 3DZT  plotted as a function of the bandwidth 3DW  in the 3D system 

for different carrier scattering models as shown in Table I: constant relaxation time 

ps1.00,3D =τ (solid curve); relaxation time inversely proportional to DOS where 

334
3 s/Jm10=DC  (dashed curve); and constant carrier MFP nm103D =l (dotted curve). The 

curve with square dots is the case when a constant background TDF bgΞ = 0.045 )0(3DΞ  is 

superimposed to the narrow band TDF for the constant MFP model. The calculations use 

K300=T , W/mK2.0=pκ , nm1=a , and TkW B=− 2/3Dμ .
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3 s/Jm10=DC  (dashed curve); and constant carrier MFP nm103D =l (dotted curve). The 

curve with square dots is the case when a constant background TDF bgΞ = 0.045 )0(3DΞ  is 

superimposed to the narrow band TDF for the constant MFP model. The calculations use 
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