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Abstract

We show that orbital energies from existing hybrid functionals do not give reliable band gaps.

Even if a functional yields a good bulk gap, it in general does not provide accurate gaps in different

structural configurations, e.g., surfaces or nanostructures. For examples, none of the popular hy-

brid functionals adequately describes the surface-state gap of Si (111) 2×1 surface. For graphene

nanoribbons, some hybrid functionals give good optical gaps (neglecting strong excitonic effects),

but not quasiparticle gaps. In both cases, there are strong variations from different hybrid func-

tionals.
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Density functional theory (DFT) within the Kohn-Sham formalism [1] has been the

method of choice for theoretical predictions of structural and ground-state electronic prop-

erties of condensed matter systems. However, for most systems, assigning the Kohn-Sham

orbital energy difference as quasiparticle band gap, Eg, leads to dramatic underestimate

of the band gap [2]. While in principle Eg is accessible within DFT, the Kohn-Sham gap

however is not equal to Eg even for the exact functional [3]. This problem is solved by ap-

propriately calculating the quasiparticle energies, e.g., within the ab initio GW method [2].

Recently, there have been a new class of DFT exchange-correlation functionals, the hybrid

functionals, constructed such that the orbital energies have been reported to give good band

gaps in solids [4, 5], in particular semiconductors.

Hybrid functionals go beyond the usual Kohn-Sham formalism and fall within the gener-

alized Kohn-Sham realization of DFT [6]. These functionals mix a fraction bHF of nonlocal

single-determinant exchange with conventional DFT exchange-correlation functionals. Pop-

ular hybrid functionals – B3LYP [7], PBE0 [8] and HSE [9] – have been constructed to give

good structural, thermodynamic and bonding properties of solids [4, 5].

In this Letter, we demonstrate that the orbital energies from existing, popular hybrid

functionals are not reliable in predicting the band gaps of materials, either the optical or

the quasiparticle gap. Even if a specific functional may give a good value for the bulk band

gaps, the same functional in general does not yield accurate gap values for the same material

in different configurations such as at its surfaces or in nanostructures.

The quasiparticle gap of an insulator can be conceptually defined in terms of the total

energy of the system containing N, N + 1 and N − 1 electrons as Eg = E(N + 1) + E(N −

1) − 2E(N). The optical gap, Eopt, is a different physical quantity and related to Eg as

Eg−Eexciton where Eexciton is the exciton binding energy. Eopt is also, in principle, accessible

within time-dependent DFT but the Kohn-Sham eigenvalues can only be used as a rough

approximation to the Eopt [10].

In hybrid functional calculations [6, 11], one solves a self-consistent field equation within

the generalized Kohn-Sham formalism:

[−
∇2

2
+vion(~r) + vH([n], ~r) + vc([n], bHF, ~r) + bHFv̂HF[n]

+(1− bHF)vx([n], ~r)]φi(~r) = ǫiφi(~r) (1)

where vion is the ionic potential, vH the Hartree potential, v̂HF the Fock operator, vx and vc
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the local exchange and correlation potentials within standard Kohn-Sham DFT respectively.

Eq. 1 goes beyond the regular Kohn-Sham formalism as the total potential is no longer local.

In cases of range-separated hybrid functionals (such as HSE), one replaces the v̂HF with a

short [9] or long [12] range part of the Fock operator. It is noted that different values

of bHF, if done properly, would give the same ground-state total energy and density, but

give different orbital eigenvalues ǫi. As in the original Kohn-Sham formulation, ǫi are just

Lagrange multipliers in minimizing the total energy and they are not quasiparticle excitation

energies. The fact that the ǫi’s can be changed with a different and arbitrary choice of the

parameter bHF illustrates nicely this point.

The physical quasiparticle gap is given by the sum of energies needed to create a quasi-

electron and a quasihole independently in the system. Such quasiparticle energies, EQP, are

given by Dyson’s equation :

[−
∇2

2
+vion(~r) + vH(~r)]φi(~r)

+

∫
Σ(~r, ~r′,EQP)φi(~r

′) d~r′ = EQPφi(~r) (2)

where Σ(~r, ~r′,EQP) is the electron self energy operator [2]. The Kohn-Sham potential has

been shown to be the best local approximation to the self-energy operator [13]. At best, the

hybrid functional of Eq. 1 which mixes the Kohn-Sham potential and single-determinant

exchange, is a rough approximation to the self energy Σ which is a nonlocal frequency-

dependent operator that is sensitive to many-electron and hence environment effects. From

this point of view, the hybrid functional eigenvalue gap from Eq. 1 should be compared

to the quasiparticle gap since there is no interaction between the excited electron and hole.

The hybrid functional gap has also been related to the quasiparticle gap by comparing the

parameter bHF to the effect of an average dielectric screening within the GW approximation

to Σ [4]. But since bHF is fixed for a given hybrid functional, such screening is fixed and

cannot respond to a change in the environment. Band gaps calculated with hybrid function-

als have also been associated with Eopt [14] without much justification since as mentioned

already electron-hole interaction is missing in Eq. 1. To put these issues in concrete terms,

we carry out calculations on the Si (111) 2×1 surface and on armchair graphene nanoribbons

using the popular hybrid functionals in the literature.

While there have been a number of studies using hybrid functionals for bulk crystals [15],

there are only a few calculations on predicting Eg or Eopt in one-dimensional [16, 17] and
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two-dimensional [18] systems. Low-dimensional systems often have optical excitations with

large exciton binding energies making the quasiparticle gaps and optical gaps quite different

[19–22]. The Si (111) 2×1 surface is a system with multiple gaps, bulk-state gap and surface-

state gap, that have been measured by photoemission and optical experiments. It provides

a good test for hybrid functionals because, not only are the surface-state wavefunctions

qualitatively different from the bulk wavefunctions, but also screening at the surface is very

different from the bulk.

The π-bonded chain reconstruction of the Si (111) 2×1 surface [23] has been studied

extensively, both theoretically [19, 20] and experimentally [24, 25]. On an ideal Si (111)

surface, the surface Si atoms are bonded to only three atoms rather than the usual four.

Owing to the 2×1 reconstruction, the dangling pz orbitals form π-bonded chains along

the [011] direction. These dangling orbitals give rise to two surface-state bands inside the

quasiparticle bulk band gap, one occupied and one unoccupied [24]. Because of the quasi-1D

nature of surface states localized on the π-bonded chains, the photo-excited surface-state

electron and holes form discrete excitonic states with a large binding energy [19, 20, 25]

as compared to the exciton in the bulk. Thus, unlike bulk Si, the quasiparticle gap of the

surface states differs significantly from the optical gap.

We perform DFT calculations using ab initio pseudopotentials and plane wave formalism

as implemented in PARATEC [26]. The Si ionic pseudopotential was generated using the

Troullier-Martins scheme [27] in the PBE approximation [28] to the exchange-correlation

functional. The use of pseudopotentials generated within PBE for hybrid functional cal-

culations can in principle lead to some errors. We explicitly check the bulk Si band gap

calculated with PBE pseudopotential and a Hartree-Fock pseudopotential and found the

differences in the band gaps for all the functionals studied here to be less than 50 meV [29].

Thus, any possible error from the pseudopotentials is negligible. We use a 12-layer slab to

simulate the (111) surface in a 24 atom centro-symmetric super cell with ∼ 20 Å of vacuum

in between the slabs. The Brillouin zone was sampled with a 4×8 ~k-point grid along the

surface directions. We used a plane wave cutoff of 35 Ry for the wavefunctions. Due to the

unscreened Coulomb interaction in the Fock operator being long-ranged, we employed a slab

truncation scheme for the Coulomb interaction [30] for all the hybrid functional calculations,

except HSE where the Coulomb interaction is now short-ranged due to the error-function

complement in the expression [9]. The structure was relaxed within the PBE approximation
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FIG. 1. Surface bands (black dots) of the Si (111) 2×1 surface calculated with (a) PBE, (b)

PBE0, (c) HSE, (d) B3LYP, and (e) Hartree-Fock approximations. Up and down filled triangles

are experimental data (from direct and inverse photo emission) of Ref. [24]. The shaded gray is

the projected bulk band structure. Energy (in eV) of the top of the bulk valence band is set to

zero in each panel.

(forces ≤ 0.02 eV/Å) and was kept fixed for the hybrid functional calculations. Because the

forces were small, relaxing the structure within each hybrid functional is not expected to

change the electronic structure. Explicitly, within HSE, the relaxation of the atoms moved

them by < 0.1 Å.

Fig. 1 shows our calculated band structure for the Si (111) 2×1 surface using semilocal

(PBE) and hybrid functionals. Also shown is the projected bulk Si band structure. To

calculate the projected bulk band structure with a refined grid, we interpolated the bands

using Wannier functions constructed from a bulk calculation with a 8×8×8 ~k-point mesh.

We aligned the bulk and slab band structures by setting the top of the bulk valence band at

the Γ point to be at the same energy in both calculations. Based on quantum confinement

energy estimated for a particle in a one-dimensional well, we estimate the uncertainity in

alignment in the two band structures to be about 0.2 eV. It is important to point out that, the

uncertainity in alignment does not affect any of the surface-state band gaps in Fig. 1 since

there is no slab confinement effect on the surface states. As is evident from Fig. 1, different

hybrid functionals give quite different band structures. Besides the PBE band structure,

which qualitatively resembles the direct and inverse photoemission experiment reasonably

well, the HSE band structure also looks similar to experiment. Experimentally, the top of

the occupied surface band at J is known to be below the top of the bulk valence band at Γ

5



Bulk Gap Surface-state Gap

Generalized Kohn-Sham Gap

PBE 0.55 0.38

PBE0 1.71 1.19

HSE 1.14 0.65

B3LYP 1.83 1.04

Hartree-Fock 6.63 4.67

Quasiparticle Gap

GW [20, 31] 1.23 0.69

Experiment (PE) [24, 32] 1.17 0.75

Optical Gap

GW-BSE [20, 31] 1.23 0.43

Experiment (opt) [25, 33] 1.16 0.47

TABLE I. Bulk and surface-state gaps of Si (111) 2×1 calculated using various functionals and

with the GW method. The experiment (PE) refers to direct and inverse photoemission values while

(opt) refers to optical gap. All values are given in eV.

by 0.1 eV [24]. However, in all the hybrid functional and Hartree-Fock calculations, this was

found not to be the case, even after accounting for a possible 0.2 eV shift in the alignment.

This effect is clearly seen in the Hartree-Fock results where the surface band is 0.7 eV (after

shifting by 0.2 eV) above the top of the valence band at Γ. All hybrid functionals show

similar incorrect behavior, with the surface band at J nearly at the same energy as that of

the top of the bulk valence band at Γ for HSE and PBE0 and 0.14 eV above for B3LYP.

The GW results (not shown in Fig. 1) from Ref. [20] on the other hand are in excellent

agreement with experiment.

Table I gives the relevant band gaps, calculated as a difference between the highest oc-

cupied and lowest unoccupied bulk or surface states, for the different functionals. Also

presented are the GW [19, 20, 31] and the GW plus Bethe-Salpeter Equation (GW-BSE)

[20, 31] and experimental results [24, 25, 32, 33]. As can be seen from Table I, all the hybrid

functionals significantly overestimate the optical surface-state gap. Moreover, different hy-

brid functionals give gaps that differ by up to 0.5 eV. Our calculated values of the bulk gap
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for PBE0, B3LYP, HSE and Hartree-Fock functionals agree well with the previous calcula-

tions for Si [34]. It is also interesting to note that the values of the bulk gap are not simply

related to the fraction of exact exchange in the hybrid functional. This is not surprising

given that the band gaps depend on the detailed character of the wavefunctions and screen-

ing environment. The actual self-energy operator is complex and cannot be determined by

just one parameter – the fraction of single-determinant exchange. Range-separation in HSE

maybe viewed as a different “effective” screening environment and results in a different gap.

Hartree-Fock substantially overestimates both the bulk and the surface-state gap. This is

primarily because of the lack of screening in Hartree-Fock. While PBE0 and B3LYP also

overestimate all the gaps, HSE gives a bulk gap that is close to the experimental value.

However, when compared to the experimental optical surface-state gap, the HSE surface-

state gap is also too large. It should be pointed out that, in this case, the HSE surface-state

gap is similar to experimental quasiparticle surface-state gap. This does not agree with the

claim in the literature that the HSE gap is expected to agree with the optical gap and it is

a good estimate of the quasiparticle gap only when the exciton binding energy is small [14].

In the present case, the bulk Si exciton binding energy is ∼ 15 meV while the surface-state

exciton binding energy is 0.28 eV. On the other hand, gaps calculated within the GW and

the GW-BSE approaches [20], for the quasiparticle gap and the optical gap, respectively,

match the corresponding experimental values well.

For 1D system, we studied armchair graphene nanoribbons (AGNRs) of different widths.

The AGNRs studied have armchair-shaped edges with the dangling σ-bonds at the edges

passivated by hydrogen atoms. Following the conventional notation, a AGNR-N is specified

by the number of dimer lines, N, along the ribbon forming the width. In this study, we

employ hybrid functionals to calculate the electronic properties of three AGNR-Ns (N=5,

6, and 7), which cover the distinct three families [35] (N=3p–1, 3p, and 3p+1, where p

is an integer) of AGNRs. These nanoribbons have been previously studied theoretically

[17, 22, 35].

For the calculations of the AGNRs, we used the Troullier-Martins scheme [27] to generate

the C and H pseudopotentials within PBE functional. Similar to the Si case, we checked

that the bulk diamond band gap calculated with the PBE pseudopotential was within 50

meV of the band gap calculated with a Hartree-Fock pseudopotential for all the hybrid

functionals [29]. The wave functions were expanded in plane waves with a cutoff energy
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AGNR-5 AGNR-6 AGNR-7

Generalized Kohn-Sham Gap

PBE 0.39 1.12 1.56

PBE0 1.02 2.08 2.59

HSE 0.59 1.50 2.02

B3LYP 0.89 1.88 2.39

Hartree-Fock 3.98 5.12 5.42

Quasiparticle Gap

GW 1.32 2.86 3.44

Optical Gap

GW-BSE 0.48 1.51 1.88

TABLE II. Band gap of armchair graphene nanoribbons calculated using various functionals and

the GW and GW-BSE approaches. All values are in eV.

of 65 Ry. The Brillouin zone was sampled with 1×1×16 ~k-points. The structures of the

AGNRs were fully relaxed within PBE. As in the Si surface case, the structures were not

relaxed further using hybrid functionals. The details of the GW and GW-BSE calculations,

performed with the BerkeleyGW package [36], were as per Ref. [22]. To avoid nanoribbon-

nanoribbon interaction, we employed a wire truncation scheme [30] of the Coulomb potential

in the Fock operator in all cases, except for the HSE functional as for the reason explained

previously.

Table II shows the calculated band gaps using various methods. In the absence of exper-

iment, the GW gaps are expected to be close to the actual quasiparticle gaps of the AGNRs

and the GW-BSE gaps are close to the actual optical gaps. Our calculations are in good

agreement with previous calculations [17, 22]. The exciton binding energies were found to

be large as seen in the difference between the quasiparticle and optical gap values. All the

functionals show the expected family behavior of the gap in the AGNRs [35]. However, in

these systems as in the case of Si (111) 2×1, gaps calculated with different hybrid functionals

differ by up to 0.5 eV. Hartree-Fock overestimates all the gaps, while PBE underestimates

the optical gap. PBE0 and B3LYP hybrid functionals underestimate the quasiparticle gap

and overestimate the optical gap. HSE gaps are in good agreement with optical gaps from
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the GW-BSE calculations, but not in agreement with the quasiparticle gap. This is the

opposite behavior from the Si (111) 2×1 case where the HSE band gaps were in agreement

with the quasiparticle gaps. It is also worth pointing out that the GW-BSE calculation gives

discrete peaks in the absorption spectrum that are related to bound excitons whose excita-

tion energy corresponds to the optical gap. While the band gap from the HSE functional

is close to the optical band gap from GW-BSE, the HSE absorption onset corresponds to a

continuum onset rather than discrete bound states. This is a qualitatively different behavior.

These results show that gaps calculated using existing hybrid functionals are not reliable

and have large variability depending on the functional and system studied. It is moreover

not justified which gaps do the results from the popular hybrid functionals should correspond

to – optical or quasiparticle. Importantly, the reliability of band gaps obtained with hybrid

functionals is not just dependent on the materials, but also on the environment. Owing

to this, hybrid functionals cannot be assumed to give good optical or quasiparticle gaps.

Further, one cannot even treat bHF as an empirical parameter for cases with multiple gaps

such as the Si surface.

In conclusion, we have studied materials in different configurations with hybrid function-

als. For the Si (111) 2×1 surface, none of the popular hybrid functionals give the correct

surface-state optical gap, while the HSE functional gives a good quasiparticle gap. For

AGNR’s, none of the popular hybrid functionals give the correct quasiparticle gap. PBE0

and B3LYP overestimate the optical gap as compared to GW-BSE results, while HSE gives

good agreement with the GW-BSE optical gaps although electron-hole interaction is not

explicitly included. Overall, there is a large variability in the results from different hybrid

functionals, and in their current forms hybrid functionals may not be relied upon to predict

band gaps.

M.J. would like to thank Dr. Noa Marom and Brad Malone for fruitful discussions.

The authors would like to acknowledge support from the U.S. Department of Energy under

Contract No. DE-AC02-05CH11231 (at Berkeley) and DE-SC0001878 (at Austin). Com-

putational resources have been provided by NSF through TeraGrid resources at TACC and

NICS.

[1] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

9



[2] M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).

[3] J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983); L. J. Sham and M. Schlüter,
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