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We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point
contacts each with a single fully-transmitting mode, a system thought to be well described without
invoking Coulomb interactions. Below 50 mK we observe a periodic oscillation in the conductance of
the dot with gate voltage, corresponding to a residual quantization of charge. From the temperature
and magnetic field dependence, we infer the oscillations are Mesoscopic Coulomb Blockade, a type
of Coulomb blockade caused by electron interference in an otherwise open system.

PACS numbers: 73.23.Hk, 73.20.Fz, 73.23.Ad

Mesoscopic systems are conventionally divided into
two classes. In closed systems electrons are localized
and Coulomb interaction effects determine the transport
properties, while in open systems the Coulomb interac-
tion can be neglected at low energies. The class of a
system depends on the contacts between the mesoscopic
region and the surrounding electrons. If the contacts
contain a large number of poorly transmitting channels,
such as in metallic nanostructures, then the crossover
from closed to open is smooth and occurs when the total
conductance of the contacts is on the order of e2/h [1, 2].
If the contacts each have one mode, as can happen in
semiconductor nanostructures, then the transition is ex-
pected to be sharp: Coulomb blockade (CB) occurs when
the mode in each contact is partially transmitting, and in
the absence of phase coherence CB disappears when the
mode in either contact becomes fully transmitting [3].

This transition from the closed to the open regime has
been studied in laterally-gated quantum dots [4–9]. Such
a dot is contacted via tunable one-dimensional channels
called quantum point contacts (QPCs), and GQPC =
2 e2/h corresponds to a single fully-transmitting spin-
degenerate mode, while GQPC ≪ 2 e2/h corresponds to
the tunneling regime. A dot is typically contacted by two
QPCs. In a one-lead dot (one QPC fully-transmitting,
while the other is kept ≪ 2 e2/h) phase coherence influ-
ences the transition from closed to open. Electron paths
start and end at the transmitting QPC, and these paths
interfere and reduce the transmission, trapping electrons
on the dot. This leads to a type of CB called Mesoscopic
Coulomb Blockade (MCB) [10, 11]. Electron interfer-
ence, and hence MCB, is strongest at zero magnetic field
because a closed path that begins and ends at the same
QPC interferes constructively with its time-reversed pair,
an effect called Weak Localization (WL).

In a two-lead dot, where each QPC has one fully-
transmitting spin-degenerate mode, many paths do not
return to the same QPC but rather go from one QPC
to the other and allow transport through the dot. This
results in different physics from the one-lead case. For

example, in the absence of phase coherence, a reflection
coefficient in the QPCs causes CB in a one-lead dot, while
in a two-lead dot the lowest-order effect is not CB but
rather a decrease in the dot conductance [3, 12]. While
there is no complete theory for phase coherent transport
in a two-lead dot that includes interactions, most pre-
vious experimental results [13, 14] have suggested that
accounting for interactions is unnecessary [15]. These
prior measurements of a two-lead dot (with N = 4 total
channels, one for each spin state of the fully transmitting
QPC modes) follow the theory for a coherent dot with
N ≫ 1 [16, 17], in which CB does not occur. A few
experiments, however, have shown weak periodic oscilla-
tions of conductance with gate voltage [18–20]. In one
case [19], the oscillations were attributed to CB caused
by the special one-dimensional dot geometry [21]. The
other experiments did not measure CB features such as
the renormalized charging energy U∗. Finally, no capac-
itance measurements have been made on two-lead dots
with fully transmitting QPCs to confirm that the oscilla-
tions correspond to a quantization of charge, as opposed
to other effects such as wave function scarring [22].

In this Letter, we report transport measurements
through a two-lead dot, showing conclusive evidence that
phase coherence causes CB to emerge in a system thought
to be open. With each QPC tuned to allow a single trans-
mitting mode, we observe a characteristic CB oscillation
in the conductance when the electron temperature is re-
duced to 13 mK, lower than previously attained in similar
systems. We characterize the oscillation using finite bias
conductance and capacitance measurements and deter-
mine U∗ and the residual charge, respectively. Magnetic
field and temperature measurements show that the os-
cillation amplitude diminishes on scales consistent with
breaking of time reversal symmetry, demonstrating that
phase coherence is responsible for the emergence of MCB
in an open two-lead system.

We measure a dot fabricated from an AlGaAs/GaAs
heterostructure with a two-dimensional electron gas
(2DEG) with density 2 × 1011 cm−2 and mobility 2 ×
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FIG. 1. (color online) (a) Electron micrograph of a device
nominally identical to the measured device. (b) Gdot vs Vbw1

and Vbw2 at T = 540 mK and B = 25 mT. The vertical lines
mark the gate voltages at which the cuts in (c) are taken. (c)
Gdot as a function of Vbw2 for different settings of the QPCs
at T = 13 mK and B = 25 mT. The bottom trace is taken at
Vbw1 = −477 mV while the top trace is at Vbw1 = −390 mV.

106 cm2/Vs. Figure 1(a) shows an electron micrograph
of the metallic surface gates. We apply negative voltages
to the gates to form a large dot of area ≈ 2.6 µm2 (calcu-
lated spin-degenerate level spacing ∆ = 2.7 µeV) that we
study, as well as an adjacent small dot that we use as a
charge sensor [23, 24]. The gates bw1, n, and bw2 define
the QPCs of the dot, while c1, c2, and bp change the
shape of the dot [13, 25]. We compensate for the small
effect gates c1 and c2 have on the QPCs. The voltages
on gates sn1 and sn2 are set so there is no measurable
conductance through the channel between them.
Figure 1(b) shows the zero-bias conductance Gdot of

the large dot as a function of the QPC gates. These
data are taken at T = 540 mK to suppress Universal
Conductance Fluctuations (UCFs) [13] and at B > 5 mT
to avoidWL. In this regimeGdot is the series conductance
of the two QPCs and there is a plateau at Gdot = 1 e2/h,
corresponding to the 2 e2/h plateau in the conductance
of each QPC. Figure 1(c) shows data taken at 13 mK
at different values of (Vbw1, Vbw2). When the QPCs are
in the tunneling regime, CB peaks are observed (bottom
trace). Even when both QPCs are set to 2 e2/h (top two
traces), we observe an oscillation with period ∆Vbw2 =
1 mV, the same as the CB peaks. The corresponding
periodicities suggest the oscillation is CB.
Figure 2(a) shows this oscillation with voltage settings

that correspond to the middle of the dot’s 1 e2/h plateau
and at B = 0. We note the oscillation is larger in am-
plitude than those in Fig. 1(c), and this B dependence
will be discussed in conjunction with Fig. 4. The peri-
odicity ∆Vc2 = 1.5 mV is consistent with the CB peak
spacing in Vc2 measured with the QPCs in the tunnel-
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FIG. 2. (color online) (a) Gdot measured at T = 13 mK
(charge sensor not active) and B = 0. (b) dI/dVds as a func-
tion of Vds and Vn at 13 mK (with the charge sensor active)
and B = 0. (c) dI/dVds as a function of Vc2, when the con-
ductance through each QPC is kept at 2 e2/h. The data are
taken at T = 13 mK (charge sensor not active) and B = 0.
The dashed white lines are guides to the eye.

ing regime, and the larger value of ∆Vc2 as compared to
∆Vbw2 reflects the smaller capacitance of gate c2 to the
dot compared to bw2. The large variations in Gdot on
the scale of tens of mV in gate voltage are caused by the
UCFs, and are easily distinguishable from the periodic
oscillations.

To find the charging energy we measure differential
conductance dI/dVds as a function of the bias voltage
Vds (Fig. 2(b)). For Vn

<
∼ −370 mV neither QPC is fully

transmitting and we see clear Coulomb diamonds with a
charging energy of U ≈ 115 µeV. As Vn is made less nega-
tive, the conductance of the QPCs increases. This causes
U to be renormalized [6, 7] and as a consequence the ver-
tical size of the diamonds shrinks. At Vn ≈ −315 mV
the QPCs are fully transmitting, and we see diamond
features with a renormalized U∗ ≈ 16 µeV (details in
Ref. [26]). These diamonds are superimposed on larger
UCFs which form a Fabry-Perot pattern in gate voltage
and bias [27]. The diamonds associated with the oscil-
lations are shown in more detail in Fig. 2(c), where the
gates are set to the middle of the dot’s 1 e2/h plateau.
The diamonds are consistent with CB and the shape can
be qualitatively described with a simple model of a dot
strongly coupled to its leads (see details in [26]).

We directly observe the residual charge quantization
with capacitive measurements. Making the voltage on a
dot gate less negative increases the charge on the dot
and changes the conductance of the charge sensor by
∆GCS. To increase sensitivity, we average repeated mea-
surements over the same range in Vn using the simul-
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FIG. 3. (color online) (a) Simultaneous measurement of
dVeff/dVn (blue dots, left axis) and transport (black dots,
right axis). The solid lines show fits discussed in the text.
(b) Charge-sensing data (left axis) and transport (right axis)
at the values of Vn for which the QPCs are open to 2 e2/h
conductance. The solid red line is a fit described in the text.

taneously measured transport data to correct for small
shifts caused by background charge fluctuations. We con-
vert ∆GCS into an effective voltage change Veff , which if
applied to the gate sp would produce the same ∆GCS.
For Vn < −375 mV the conductances of both QPCs are
less than 2 e2/h and we have well-defined CB in Gdot as
shown in Fig. 3(a). The charge sensor shows step-like de-
creases in Veff when electrons are added to the dot. We
plot the derivative D = dVeff/dVn in Fig. 3(a) and for
Vn < −375 mV the CB peaks correspond to large dips in
D. As Vn is increased, the dips remain aligned to peaks
in Gdot. Figure 3(b) shows measurements with the QPC
conductances at 2e2/h. We see a periodic variation in
D, with the dips corresponding to peaks in Gdot. This
confirms that the conductance oscillation corresponds to
a residual quantization of charge on the dot.

In the absence of theory for a phase coherent two-lead
dot, we extract the quantized charge by fitting the data to
the available theory for a one-lead dot. D is determined
by the capacitances of the dot d and the charge sensor
CS [8]: D = Rn + Rd(Cn,d − e dNd/dVn)/C

∗
d,tot. Here

Rn = Cn,CS/Csp,CS and Rd = Cd,CS/Csp,CS, where Cx,CS

and Cx,d are the capacitances between a gate x and the
dot and CS, respectively. Cd,CS is the capacitance be-
tween the dot and the CS, Nd is the number of electrons
on the dot, and C∗

d,tot is the renormalized total capaci-

tance of the dot with U∗ = e2/C∗
d,tot. For Vn < −385

mV the lineshapes are well-described by theoretical pre-
dictions for dNd/dVn [28]. The solid red lines in Fig. 3(a)
show the results of simultaneously fitting the Gdot and D
data using values of Rn, Cn,d, and C∗

d,tot estimated from
other measurements (see Ref. [26] for details). This fit
gives Rd = 0.93 (we estimate an error of ±0.21), and we
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FIG. 4. (color online) (a)Gdot vs Vc2 at several magnetic fields
at 13 mK. Traces are offset by 1 e2/h. (b) PMCB (solid line,
left axis) obtained by Fourier transforming data like those in
(a). The dotted line shows the ensemble-averaged Gdot vs B.
All data are taken at 13 mK. (c) Gdot vs Vc2 at B = 0 and
several temperatures. Traces are offset by 1 e2/h. (d) PMCB

averaged for data taken over a wider range of Vc2 than in (c)
at several values of Vc1. The data are taken at B = 0 (filled
triangles, left axis) and B = 30 mT (open squares, left axis).
For comparison we show measurements of Var(Gdot) (crosses,
right axis) at B = 0.

use this value to analyze the data in other gate voltage
regions. For −370 < Vn < −340 mV the solid line in
Fig. 3(a) shows a fit to the prediction for a one-lead dot
without phase coherence, with the adjustable QPC near
2 e2/h [3, 8]. In the limit of a perfectly transmitting con-
tact, this theory predicts there should not be a periodic
variation in the charge sensing signal, so we fit the data
in Fig. 3(b) to a model for MCB in a one-lead dot [10]:
e dNd/dVn = Cn,d(1 + (A/e) cos(2πCn,dVn/e)) where A
gives the residual charge quantization. We find that
A/e = 0.27+0.21

−0.08, indicating that a significant amount
of charge is still quantized.

If the conductance oscillation is MCB, then it should
be sensitive to an applied magnetic field which dis-
rupts the constructive interference between time-reversed
paths that causes WL. Figure 4(a) shows Gdot at several
fields. We follow Cronenwett et al. [11], Fourier trans-
forming the data and integrating the power spectral den-
sity around the frequency of the oscillation to find the
power PMCB. The results are shown as the solid line
in Fig. 4(b). The dotted line in Fig. 4(b) shows Gdot

averaged over an ensemble of dot shapes obtained by
changing the voltages on gates c1, bp, and c2 [25, 29].
The dip around B = 0 is caused by WL, and its width is
the field scale necessary to break time-reversal symmetry.
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The fact that the amplitude of the oscillation decreases
over the same field scale is strong evidence that the os-
cillation is MCB. We note that in a two-lead dot, any
trajectory containing a loop contributes to WL, includ-
ing trajectories that go from one QPC to the other [30].
These trajectories should contribute to MCB. For B > 5
mT PMCB is small but non-zero: weak oscillations are
still present at some gate voltages and magnetic fields,
e.g. the top two traces in Fig. 1(c). These oscillations
occur because, even at finite field, electron paths can
still constructively interfere; however, without the reli-
ably constructive interference of time-reversed paths, the
oscillations are weaker and less frequent.

MCB should also depend on temperature T . The de-
phasing time τφ, which is the time scale on which elec-
trons in the dot lose phase coherence, decreases with in-
creasing T [29]. This decrease in τφ weakens the MCB in
two ways: first by reducing the electron interference and
second by broadening the states in the dot [31]. Increased
T also broadens the Fermi distribution in the leads. If we
consider just the reduction of interference with increas-
ing T , MCB should be weaker once τφ is on the scale of
the dwell time τd = πh̄/∆ ≈ 0.8 ns, which is the charac-
teristic time the electron spends in the dot. Figure 4(c)
shows measurements of Gdot at different T , and MCB is
suppressed for T >

∼ 54 mK. From measurements of τφ vs
T extracted from WL [25] we find τφ = τd at T ≈ 80 mK,
and this temperature scale is consistent with our obser-
vations. Figure 4(d) show the results of extracting PMCB

from data at B = 0 (filled circles) and B = 30 mT (open
squares). The oscillation decreases rapidly with increas-
ing T (the saturation at PMCB = 2× 10−5e4/h2 is from
the noise floor). We compare our data to measurements
of Var(Gdot) [25], a quantity that characterizes the size
of the UCFs and hence also depends on phase coherence.
Although we do not expect PMCB and Var(Gdot) to have
the same T dependence, we see that PMCB is at least as
sensitive to T as Var(Gdot), supporting the conclusion
that the oscillations depend on phase coherence.

Without phase coherence a small reflection coefficient
r2 (defined by GQPC = 2e2/h (1 − r2)) in the QPCs
cannot account for the observed oscillations. Such an
r2 can be caused if the QPCs are not perfectly trans-
mitting, or by a closed orbit where an electron enters
the dot and reflects off a wall back into the same QPC.
The field scale over which PMCB decreases in Fig. 4(b)
is that necessary to introduce several flux quanta in the
dot. The area of the QPC and a single-bounce closed or-
bit are much smaller than the dot. Were they the cause
of the oscillation then the magnetic field scale would be
much larger than we observe. We induce reflections in
both QPCs by making Vn more negative and confirm this
expectation [26]. Moreover, in the absence of phase co-
herence, the lowest-order effect of finite r2 is to decrease
Gdot, whereas any oscillations are order r4 or higher [12]
and hence highly suppressed. Thus the oscillations we

observe require phase coherence in the dot.
In conclusion, in a two-lead dot we observe an oscilla-

tion in Gdot that we identify as MCB, a type of CB that
depends on electron interference. This type of dot was
thought to be well-described without explicit Coulomb
interactions. Our results demonstrate that the under-
standing of this system, and more generally two-terminal
mesoscopic systems with several transmitting modes and
long coherence times at low temperatures, is incomplete
and that theoretical work is necessary to explain the in-
terplay of coherence and Coulomb interactions.
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