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We calculate the optical spectra of silicon, germanium, and zincblende semiconductors in the adia-
batic time-dependent density functional formalism, making use of kinetic energy density-dependent
(meta-GGA) exchange-correlation functionals. We find excellent agreement between theory and
experiment. The success of the theory on this notoriously difficult problem is traced to the fact
that the exchange-correlation kernel of meta-GGA supports a singularity of the form α/q2 (where
q is the wave-vector and α is a constant), whereas previously employed approximations (e.g. local
density and generalized gradient approximations) do not. Thus, the use of the adiabatic meta-GGA
opens a new path for handling the extreme non-locality of the time-dependent exchange-correlation
potential in solid-state systems.

The first-principle calculation of the optical properties
of semiconductors is a classic and practically important
problem in electronic structure theory. The difficulty
stems largely from the critical role played by electron-
electron interactions, particularly the so-called excitonic
effects, i.e. the interaction of an electron in the conduc-
tion band with the hole left behind in the valence band.
Early calculations [1] based on diagrammatic many-body
theory achieved good agreement with the experiment at
the price of much computational effort. In recent years,
the problem has been tackled by several authors [2], who
made use of state-of-the-art methods such as the GW ap-
proximation for the electron self-energy and the Bethe-
Salpeter equation for the electron-hole interaction. These
methods are computationally demanding and not so eas-
ily adaptable to an emerging new generation of electronic
materials, e.g. organic semiconductors and long polymer
chains.

A promising alternative to the traditional many-body
approach is provided by the time-dependent density func-
tional theory (TDDFT) [3]. This approach directly
targets the density-density (or, in some versions, the
current-current [4]) response function of a fictitious non-
interacting system, the so-called Kohn-Sham (KS) sys-
tem, which is so designed as to produce (at least in princi-
ple) the same density/current response as the physical in-
teracting system. The elimination of interactions greatly
reduces the computational effort, but the complexity of
the many-body problem eventually resurfaces, since the
quality of the results is crucially determined by the qual-
ity of the (approximate) exchange-correlation (xc) poten-
tial vxc(r, t) in which the fictitious non-interacting elec-
trons move.

Successes and failures of the TDDFT approach to the
calculation of optical spectra of semiconductor are well-
documented. The first difficulty, which has been known
since the early 1980s, is that the basic local-density ap-

proximation (LDA) and its semi-local extensions severely
underestimate the band gap. The problem with the
KS band gap can be corrected by the use of orbital-
dependent functionals [5–7] [8] or the TDDFT approach
can be implemented on top of a band-structure obtained
by a many-body calculation [9–11]. However, even if the
band-gap had been corrected, the calculation of the opti-
cal properties is not easy. The standard approach based
on the adiabatic local density approximation (ALDA) [3],
for example, dramatically underestimates the low energy
peak – commonly referred to as the “excitonic peak” –
in the optical spectrum. Improvements on the ALDA
such as the adiabatic extension of the GGA do not fare
much better. The exact exchange approach [6] has been
found to catch the excitonic effect in silicon [12], but
this was achieved at the cost of artificially restricting the
set of states included in the calculation to avoid the “col-
lapse” of the spectra. So far, the most consistent ab-initio
scheme leading to results in good agreement with exper-
iment has been the recasting of Bethe-Salpeter equation
as an equation for a two-point function within the frame-
work of TDDFT [10]; but even this approach remains
computationally very demanding.

In recent years, a new class of approximate functionals
has emerged in ground-state DFT. These are known as
meta-GGA (MGGA) functionals and their defining char-
acteristic is to depend not only on the density and its
gradient, but also on the non-interacting kinetic energy
density τ(r) [13–16]. At first sight, the dependence on
τ(r) seems to contradict the general statement that the
xc potential is a functional of the density. But, it must
be kept in mind that τ(r) is determined by Kohn-Sham
orbitals which, in turn, are nonlocal functionals of the
density. Thus the MGGA functionals are still function-
als of the density, but intrinsically nonlocal ones. Their
power stems entirely from this fact.

In this Letter we show that an adiabatic approxima-
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tion based on meta-GGA functionals leads to very sig-
nificant improvement in the calculation of optical prop-
erties. The fact that meta-GGA functionals can lead to
improvements in the calculation of the KS band gap has
been known for some time [16]. What we add here to
that knowledge is the realization that these functionals
can also produce accurate optical spectra. And since
the use of the adiabatic approximation automatically ex-
cludes retardation effects, we conclude that the primary
reason for the success of the meta-GGA functionals is
the improved treatment of the long-rangedness in the xc
potential. This long-rangedness (often referred to as “ul-
tranonlocality”) has long been known to be a problem
in TDDFT, especially so in the applications to extended
systems. While its strength could be inferred from fits to
experimental spectra [9], none of the approximations de-
veloped so far could deal with it satisfactorily. We believe
that the use of meta-GGA functionals is a breakthrough
in the handling of ultranonlocality and paves the way to
efficient first-principle calculations of the optical proper-
ties of semiconductors and more complex materials.
Formulation – The crucial quantity targeted in

TDDFT is the density-density response function
χ(r, r′, ω), which is related to the non-interacting KS re-
sponse function χs(r, r

′, ω) by the equation [3]

χ−1(r, r′, ω) = χ−1
s (r, r′, ω)−fxc(r, r

′, ω)−
e2

|r− r′|
, (1)

where fxc(r, r
′, ω) = δvxc(r, ω)/δn(r

′, ω) is the xc kernel,

defined as the functional derivative of the dynamic xc
potential vxc(r, ω) with respect to the dynamic particle-
density. In order to calculate fxc we start from the ex-
pression for the xc energy within MGGA as

Exc =

∫

ǫxc[n(r),∇n(r), τ(r)]dr, (2)

where the xc energy density ǫxc is a local function of its
three arguments, n(r) is the particle density,

τ(r) =
1

2

∑

α

fα|∇ψα(r)|
2

=
∑

α

fαǫα|ψα(r)|
2 − vs(r)n(r) +

1

4
∇2n(r) (3)

is the non-interacting kinetic energy density, ψα, ǫα, and
fα are the KS orbitals, their eigenenergies, and the occu-
pation numbers, respectively, and vs(r) is the static KS
potential. The second equality in Eq. (3) follows from
the KS equation. With the use of the definitions of the
xc potential and the xc kernel as the first and the second
functional derivatives of Exc with respect to density, we
derive from Eq. (2)

vxc(r) =
∂ǫxc
∂n

(r)−∇
∂ǫxc
∂∇n

(r)+

∫

∂ǫxc
∂τ

(r′)
δτ(r′)

δn(r)
dr′, (4)

fxc(r, r
′) =

∂2ǫxc
∂n2

(r)δ(r − r′)−

[

∇
∂2ǫxc
∂n∂∇n

(r)

]

δ(r− r′)−∇i

∂2ǫxc
∂∇in∂∇jn

(r)∇jδ(r− r′)

+
∂2ǫxc
∂n∂τ

(r)
δτ(r)

δn(r′)
+
∂2ǫxc
∂n∂τ

(r′)
δτ(r′)

δn(r)
−∇

∂2ǫxc
∂∇n∂τ

(r)
δτ(r)

δn(r′)
−∇′ ∂2ǫxc

∂∇′n∂τ
(r′)

δτ(r′)

δn(r)

+

∫

∂2ǫxc
∂τ2

(r′′)
δτ(r′′)

δn(r)

δτ(r′′)

δn(r′)
dr′′ +

∫

∂ǫxc
∂τ

(r′′)
δ2τ(r′′)

δn(r)δn(r′)
dr′′. (5)

The xc potential of Eq. (4) has been thoroughly ad-
dressed in Ref. 17 and our focus will be the xc kernel
of Eq. (5). With the use of the standard perturbation
theory, the functional derivatives of τ evaluate to [18]

δτ(r)

δn(r′)
=−vs(r)δ(r − r′)

+

∫

H(r, r′′)χ−1
s (r′′, r′)dr′′ +

1

4
∇2δ(r− r′), (6)

δ2τ(r)

δn(r′)δn(r′′)
=−δ(r−r′)χ−1

s (r, r′′)−δ(r−r′′)χ−1
s (r, r′)

+2

∫

F (r, r1,r2)χ
−1
s (r1,r

′)χ−1
s (r2,r

′′)dr1dr2

+

∫

H(r, r1)χ
−1
s2 (r1, r

′, r′′)dr1, (7)

where

H(r, r1)=
1

2

∑

α6=β

(fα−fβ)(ǫα+ǫβ)

ǫα−ǫβ
ψ∗
α(r)ψβ(r)ψα(r1)ψ

∗
β(r1),

(8)

F (r, r1, r2) =
∑

α6=β 6=γ 6=α

fαǫα − fβǫβ
(ǫα − ǫβ)(ǫα − ǫγ)

[ψ∗
α(r2)ψγ(r2)

× ψ∗
γ(r)ψβ(r)ψα(r1)ψ

∗
β(r1) + (r ↔ r1)

]

−
∑

α6=β

fα − fβ
(ǫα − ǫβ)2

ǫβ
[

|ψα(r1)|
2ψ∗

α(r2)ψβ(r2)
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× ψα(r)ψ
∗
β(r) +(r ↔ r1) + (r1 ↔ r2)] , (9)

and χ−1
s2 in Eq. (7) is the inverse of the quadratic KS

density-response function χs2(r, r
′, r′′) = δ2n(r)

δvs(r′)δvs(r′′)
.

Equations (5)-(9) together with the explicit KS re-
sponse functions [18] constitute the complete solution to
the MGGA-based xc kernel fxc.

Ultranonlocality – In reciprocal space, the xc kernel
becomes a matrix in the reciprocal vectors fxc,GG′(q).
Whether or not the MGGA for fxc provides an improve-
ment over conventional approximations depends on the
presence or absence, in the optical limit q → 0, of a
singularity of the type fxc,00(q) ≃ α/q2 [9]. Obviously,
LDA and GGA [the first three terms in Eq. (5)] do not
have such a singularity. We can also show [18] that all
the terms on the second line of Eq. (5) as well as the
first term on the third line, do not contribute to the sin-
gularity of fxc,00(q). As for the last term on the third
line of Eq. (5), we simplify it by replacing the position-
dependent quantity ∂ǫxc

∂τ
(r) by its average over the unit

cell – an approximation that is well justified, a posteriori,
for the systems we have studied. With these approxima-
tions, we simplify fxc to [18]

fxc,GG′(q) ≈ −
∂ǫxc
∂τ

χ−1
s,GG′(q), (10)

where the overline denotes the average over the unit cell.
The right-hand side of Eq. (10) contains the singularity

in question because χ−1
s does [19]. Focusing on the 00

component, we finally get

α = −
∂ǫxc
∂τ

lim
q→0

q2χ−1
s,00(q). (11)

Considering that ∂ǫxc/∂τ is almost the same for Si and
Ge, neglecting for a moment the local-field effects, and
neglecting the unity compared to the static dielectric
function of a semiconductor, we see that Eq. (11) is in
agreement with the empirical rule of α being inversely
proportional to the dielectric function [11], [20]. We also
note that the ultranonlocality we find seems to be the
first explicit demonstration of the fact that the kinetic
energy-dependent functionals are not in practice semi-
local in the density [7].

Choice of functionals and calculation of optical proper-

ties – Having established on the fundamental level that
the adiabatic meta-GGA-based TDDFT does account for
the ultra-nonlocality in crystals, we now turn to numer-
ical calculations. First we note that only the group of
functionals that provide Exc (e.g, VS98 [13] and TPSS
[14]) rather than those providing vxc directly (e.g., BJ06
[15] and TB09 [16]) can be used to build fxc, since for
the functionals of the latter group the corresponding Exc

does not exist [16]. We have used two well established

TABLE I. The average over the unit cell of the derivative of
the exchange, correlation, and xc energy density with respect
to the kinetic energy density found for Si and Ge with the
VS98 [13] and TPSS [14] functionals.

VS98 TPSS

∂ǫx/∂τ ∂ǫc/∂τ ∂ǫxc/∂τ ∂ǫx/∂τ ∂ǫc/∂τ ∂ǫxc/∂τ

Si 0.122 -0.226 -0.104 4.60×10−3 -1.15×10−4 4.49×10−3

Ge 0.135 -0.241 -0.106 2.94×10−3 8.73×10−5 3.03×10−3

MGGA functionals VS98 [13] and TPSS [14] for the cal-
culation of both the ground-state with vxc of Eq. (4) and
fxc of Eq. (10) [21]. The resulting values of the key quan-
tity ∂ǫxc/∂τ entering Eq. (10) are listed in Table I. At
first glance surprisingly, the values found with the two
different functionals differ drastically: The τ -dependent
part of the TPSS functional was found negligible every-
where over the unit cell. In the supplemental material
[18], we analyze the τ -dependence of VS98 and TPSS
functionals to the conclusion that for the latter it is very
weak. Accordingly, we argue that while well-tuned to
yield accurate Exc, TPSS performs unsatisfactorily with
respect to its τ -derivative. A clear reason for the weak
τ -dependence of TPSS can then be easily identified: This
functional is tuned to (i) the nearly free electron gas
(NFEG) and (ii) the one- and two-electron systems [14].
In both cases, due to the gradient expansion of the kinetic
energy of NFEG and to the von Weizsäcker’s formula for
the kinetic energy of one and two electron systems, re-
spectively, τ is (semi-)local in density, which leads to the
local theory with respect to fxc and zero α (Cf. [22]). On
the other hand, the VS98 functional is designed to work
better in the strong inhomogeneity case [13], which qual-
itatively explains its success in yielding realistic values of
α. We believe that the ability to yield an accurate value
of α should be added from now on to the list of basic
requirements that a good xc functional must satisfy.

We calculated the KS band-structure and the micro-
scopic density-response matrix of Si and Ge with the
full-potential linear augmented plane-wave (FP-LAPW)
method and the VS98 MGGA xc functional [23]. The
supporting results for zincblende semiconductors are pre-
sented in [18]. The real and imaginary parts of the macro-
scopic (q = 0) dielectric function are presented in Figs. 1
and 2. It is evident that the inclusion of the the non-
local fxc of Eq. (10) via the MGGA greatly improves the
agreement between the theory and experiment, in partic-
ular, making the excitonic peak considerably more pro-
nounced. We note that as adiabatic and, consequently,
real, our fxc has no effect on the band gap. Therefore, in
Figs. 1 and 2 the TDDFT and RPA band gaps are the
same, determined by the KS excitation spectrum.

It is instructive to draw a parallel between our ap-
proach and that of Ref. 9. Before the inclusion of fxc,
both methods produce single-particle spectra that un-
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FIG. 1. (color online) Dielectric function of silicon. Thin solid
(red online) line is the result obtained with MGGA band-
structure and including the many-body interactions through
fxc of Eq. (10). Dashed (green online) line is the result ob-
tained with MGGA band-structure but with fxc = 0 (RPA).
Dotted (blue online) line is obtained with LDA band-structure
within RPA. Thick solid line is the experiment from Ref. 24.
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FIG. 2. (color online) The same as Fig. 1 but for germanium.

derestimate the intensity of the excitonic peak. Then,
with the inclusion of the many-body interactions through
fxc, the spectra are red-shifted and the excitonic feature
grows. The fundamental differences between the two ap-
proaches are that: (i) We remain all the time within the
framework of TDDFT, while Ref. 9 uses a combination
of TDDFT with the GW approximation of many-body
theory; (ii) While the quantity α in Ref. 9 was a fitting
parameter, we have for it an explicit expression, Eq. (11),
derived from an xc-energy functional. In this regard, we
note that an MGGA functional is the simplest type of
functional that produces an ultra-nonlocal fxc in an adi-
abatic approximation. Moreover, for Si, Eq. (11) evalu-
ates to α = −0.267, which compares reasonably well with
the best fit value of Ref. 9 of α = −0.2 [25].

To further explore the range of applicability of our the-
ory, we have carried out calculations for the wide-gap
insulator LiF to the result that with the approximation
(10), the value of ∂ǫxc/∂τ is too small to account for
the bound exciton. With regard to this challenge, a full
numerical implementation of the “exact” MGGA fxc of
Eq. (5) seems a promising approach [18].

In conclusion, we have developed the adiabatic
TDDFT formalism for the kinetic energy dependent
(MGGA) exchange-correlation functionals. In con-
trast to LDA and GGA approximations, the result-
ing exchange-correlation kernel fxc is shown to exhibit
the singularity of the type α/q2, which is a neces-
sary feature for a theory to describe the excitonic ef-
fect in crystals. Our calculations performed for a num-
ber of the diamond-structure and zincblende semiconduc-
tors demonstrate the high promise of the MGGA-based
exchange-correlation functionals as a new tool in the ar-
senal of TDDFT methods.
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