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The mixing properties of turbulent flows are, at first order, related to the dynamics of separation
of particle pairs. Scaling laws for the evolution in time of the mean distance between particle pairs
<r2>(t) have been proposed since the pioneering work of Richardson. We analyze a model which
shares some features with 3D experimental and numerical turbulence, and suggest that pure scaling

laws are only subdominant.

The dynamics is dominated by a very wide distribution of “delay

times” t4, the duration for which particle pairs remain together before their separation increases
significantly. The delay time distribution is exponential for small separations and evolves towards a
flat distribution at large separations. The observed (r?)(t) behavior is best understood as an average
over separations that individually follow the Richardson-Obukhov scaling, 7% o t*, but each only
after a fluctuating time delay t4, where t4 is distributed uniformly.
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Scalar transport by turbulent flows is naturally de-
scribed in terms of Lagrangian particle dispersion. This
most generally requires knowledge of the statistics of n-
particle dynamics {ry(t),r2(¢),...,r,(¢)} which in turn
hinges on a closure scheme [1]. Recent theoretical and
phenomenological efforts have focused on the dynamics
of tetrads [2, 3] as tracers of nonlinear (triadic) interac-
tions. A simpler first step is the pair dispersion prob-
lem, acquiring an understanding of the evolution in time
of the distance between two Lagrangian fluid particles
(r?(t))pairs- Recent reviews [4, 5] have concluded that for
such 2-point statistics the predictions of the celebrated
Kolmogorov 1941 theory are not as readily observed as
for 1-point statistics. We examine the issue here using a
stochastically driven point vortex model [6]. The model
creates a 2D flow via the interaction of randomly gener-
ated vortices of random amplitude. Generation followed
by merger of vortices mimics some ingredients of three
dimensional vortex stretching and dissipation.

Let us first recall some fundamental features of the 2-
point dispersion problem and associated scaling hypothe-
ses in the context of the Kolmogorov phenomenology of
turbulence. In the limit of very short times, comparable
to the dissipative time scale 7,, neighboring fluid parti-
cles are expected to separate exponentially following the
largest Lyapunov exponent of the local (smooth) flow.
On the other hand, for very long times, comparable to
the flow integral correlation time 77, turbulence is ex-
pected to be diffusive and so one expects <r2>pairs x t.
Modeling efforts have thus concentrated on the interme-
diate range of time scales, 7, < t < T, (the “inertial”
subrange). In this range, there is no characteristic time
or length scale and the constraint of a fixed mean energy
transfer rate (e) suggests the relationship known as the

Richardson-Obukhov law [7, 8], (r?) = g(e)t3, where g
is a dimensionless constant. (Note: this scaling also re-
sults if the particles execute a random walk in velocity
space, i.e. if one assumes a diffusive behavior for the ve-
locity difference between two points, (du(t))?  t, then
r(t) = [ ou(t')dt’ ~ t3/2. There is some suggestion that
single point Lagrangian trajectories effectively sample ve-
locity space in this way — Eqn. 18 in [6].)

However, the inertial range is limited in its extent,
Tr/my ~ Re'/? with Re the flow Reynolds number, and
it has been argued that one should include the initial sep-
aration 7o in the above dimensional argument since the
relative dynamics of a particle pair introduces an origin
of time, that at which their locations coincide. Taking
to as the time over which the initial separation is impor-
tant, one looks for a scaling solution (r?)pairs = 78 f(t/t0).
Batchelor [9] suggested that the characteristic time ¢o
for the initial entrainment of the particle pair by an
eddy of size 7y follows the Richardson-Obukhov law,
to ~ <e>’1/3r§/3, and thus for times less than ty pair
separation evolves as (r2) = ¢'({€)ro)?/?t?, with ¢’ an-
other dimensionless constant related to the Kolmogorov
constant for the longitudinal second-order velocity struc-
ture function, ¢’ = (11/3)Cy. For ty < t < Ty, the
Richardson-Obukhov law still holds.

Such scaling behaviors have been difficult to identify
in experiments, observations, or direct numerical sim-
ulations. It has been suggested that it is because of
the limited inertial range accessible to numerical studies
that they only hint at possible asymptotic Richardson-
Obukhov behavior [10], though exit time statistics seem
to provide clearer evidence [11, 12]. On the other hand,
experimental studies point to Batchelor scaling when
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FIG. 1: (a) Example trajectories of particle pair members.
Trajectories of individual members of each pair are shown
with thin and bold lines. (b) Corresponding (by color) time
traces of their separation 7(t). All pairs were initiated, at sites
indicated by open circles, with initial separation ro = 0.2.

the behavior of (r?(t)) is directly investigated [13, 14]
or to a Richardson-Obukhov regime if time and space
are suitably rescaled to account for the initial phase
(ro,to) [15]. Here we suggest an alternative, that while
the Richardson-Obukhov scaling may underly the dy-
namical behavior of individual particle pairs it does so
only intermittently, interrupted by “trapping delays”
with a broad distribution of durations, and it is the av-
eraging over these delays which dominates the observed
(r?) behavior [16].

We employ a simplified point-vortex flow model, the
main characteristics of which [6] are only briefly recalled
here. Point vortices are randomly generated at a con-
stant average rate with Gaussianly distributed intensity
in a two-dimensional periodic domain of dimension z2,,. .
The velocity field is built from the contributions of each
individual vortex as

N r, R
:Zm(zx(x—xk)), (1)

k=1

u(x)

where 'y, are the circulations, and the range of con-
tribution is truncated at the distance .. Vortex
merger is imposed when vortices are closer than a fixed
critical separation, unit one distance. (We note, that
for simplicity of notation (as compared to [6]) we scale
the distance between Lagrangian particles here so that
r = 2my/x? 4+ y2.) The system would ultimately decay
due to the merger of oppositely signed vortices except
for the continuous stirring by the aforementioned gener-
ation of new point vortices at random locations in the
domain. Effective stretching occurs when such vortices
are generated within the merging distance of an existing
like-sign vortex. The velocity field created in this way
shows surprisingly strong similarities to 3D turbulence.
For example, the agreement between the Lagrangian in-
termittency (1-point statistics) in the model and that
found experimentally is quite remarkable [6]. We will
show here (Figure 2) that this is true for pair dispersion
(2-point statistics) as well.

The point-vortex model solutions discussed in this pa-
per each continue, with the same parameter values, from
the endpoint of the simulation presented in [6]. They
were seeded with a grid of N € [2304, 2304, 2304, 1024]
Lagrangian particle pairs, randomly oriented and with
initial separations between pair members of 7y €
[0.05,0.2,0.5,1.0] respectively. The positions and veloc-
ities of each particle were tracked as the flow evolved.
Examples of particle trajectories and corresponding pair
separations r(t) are shown in Figure 1, with thin and bold
lines marking individual pair member paths and an open
circle marking their initial positions. It is clear even from
this limited sample of trajectories that individual pairs
show distinctive behaviors. Pair separation initiates af-
ter differing initial delays and can be intermittent even
at late times, stalling due to trapping events. These dif-
ferences occur even when the pairs share the same initial
separation, as they do in Figure 1.

The solid curves in Figure 2 show the time evolution
of the mean squared-separation of the particle pairs, and
are qualitatively similar to those of dispersion in both
laboratory [e.g. 13, 15] and three-dimensional numerical
experiments [e.g. 12, 17]: 1) the pair separation grows
steeply after an initial phase during which the particles
remain in close proximity (though this phase is exagger-
ated by the logarithmic scale) and 2) no clear scaling
behavior emerges. The slopes of the curves observed in
previous studies differ, ranging from values of 2 in [13] to
31in [12, 15], and 4.5 (possibly 4) in [17]. In our work, the
curves collapse when time is shifted so that the origins of
time in the r9 > 0.05 cases align with the times required
to reach (r?) = r2 in the ry = 0.05 case (black, blue, and
red dashed curves in Figure 2) and show a slope of about
4 over a limited range.

The scaling discrepancies seen in previous studies have
usually been taken to reflect the initial conditions of the
pair measurements, and several approaches have been
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FIG. 2: Pair dispersion (r*(t)) for initial separations ro =
1.0,0.5,0.2, and 0.05 shown with black, blue, red, and brown
curves respectively. Inset shows t> compensated curves.
Dashed black, blue, and red plot dispersion with shift in time
based on time to reach (7") =19 =1.0,0.5,and 0.2 in ro = 0.05
solution. Dash-dotted curves show results of uniform waiting
time distribution model (see text), and brown dashed curve
the 7o = 0.05 solution with time shifted to account for time to
reach (ro) = 0.5 in that. Fiducial (r2()) o t? and (r2(t)) o ¢
dotted lines are shown for reference.

proposed to account for them. Perhaps the most convinc-
ing evidence for scaling comes from the exit-time analysis
proposed in [11, 12], but even in that analysis the scaling
range is quite limited. Critically, such exit-time analy-
sis relies on the assumption that the time ty required to
reach a separation significantly larger than the initial g
has a distribution peaked around the dimensional value
(r2/(€))'/3. We show here that it this not the case — at
least not in this simplified model of a turbulent flow. As
seen in Figure 3, the distribution of such times is very
broad. It is exponential with a time scale of order the
flow integral time for small initial separations but rapidly
evolves towards a flat distribution as r¢ grows into the
inertial range. We will return in detail to these proper-
ties, which are the main findings of our study, but we first
demonstrate that such a broad distribution of delay times
has an order-one effect on the dynamics of separation.
A crude model of the dynamics underlying each indi-
vidual pair separation can be constructed as a combina-
tion successive delays and seperations, as in [16]. Here
we consider only two such steps: in the first, the parti-
cles remain at their original separation distance rg for a
time ¢4, a time chosen from a uniform distribution, as
suggested by the data. In the second, they separate ac-
cording to an algebraic law, r? = 72 + (t — t4)®, where
« is a constant which may be set to 3 for an expected
Richardson scaling or 2 for Batchelor-like behavior. The
result of averaging over this simplified dynamics is shown
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FIG. 3: Probability density of delay times, time to double
the initial separation, for narrow ranges of 7o (one unit wide)
characterized by mean ro = 0.05,1.29,3.57,7.53,15.4, an 31.4
(gray, red, green, blue, fuchsia, and cyan respectively). Solid
lines plot exponential fits to distribution tails. Values of these
are plotted in the inset as function of ro, along with the same
measure from a range of simulations (black symbols).

in Figure 2 as the black dash-dotted curve. Two features
are readily apparent: (i) the model behavior is in very
good agreement with the with numerical data of the sim-
ulation, (ii) a scaling plateau (r?)/t® ~ C is not observed,
even when a perfect Richardson scaling is imposed in the
model — in fact an underlying Batchelor scaling (i.e; % )
in the separation phase actually yields a better Richard-
son (r?)/t3 plateau. This is because a random sequence
of algebraic separations with uniformly distributed delays
would actually lead to the average pair separation grow-
ing as [(t — tq)*dt oc t**! [18]. For instance a Richard-
son t3 scaling actually leads to the observed t* behavior
observed in Figure 2. Other broad delay time distribu-
tions, nonuniform, produce somewhat different slopes, all
between 3 and 4. We conclude that similarly the actual
dynamics of separation is dominated by the wide distri-
bution of delay times. Additional evidence for this is
found in the observed behavior of the ro = 0.05 solution.
When time in that solution is shifted to account for the
time needed to reach the ry = 0.05 initial condition, and
when that temporal offset is based on the uniform waiting
time distribution model, it follows the black dash-dotted
curve of the model very closely (as shown by the dashed
brown curve in Figure 2). In other words, pair dispersion
in the point vortex model behaves as the superposition
of Richardson-Obukov trajectories with onset times sam-
pling a uniform distribution of delays.

We thus now aim to quantify the delay times t; ob-
served in the point vortex simulations. We define the
delay time as the time needed for the distance between
a particle pair to grow by a factor of two, and note that
the change in terminology from exit time, used by previ-
ous authors, to delay time here is non-trivial. We imag-
ine the delay time to occur not strictly at the beginning
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FIG. 4: Probability density of pair separations r in ro =
0.05 solution a function at ¢ = 0, 10, 20, 30, and 40 (gray, red,
green, blue, and fuchsia respectively). Inset plots logarithm
of the mean (solid) and variance (dashed) of distribution as
function of time. Note that the variance rapidly exceeds the
mean by an order of magnitude.

of the measurement, to account for effects of the initial
condition, but continuously throughout the time series
as subsequent trapping events at large scales occur with
finite probability.

To illustrate the delay time probability distribution we
analyze the evolution of pairs with narrowly specified val-
ues of initial separation ry, while understanding that at
any time t a range of effective “initial” separations is
sampled by the solution involving many pairs (Figure 4).
The delay time distributions as a function of ry are shown
in Figure 3. Very wide distributions occur for all values
of rg, with the distribution widening with increased rg.
That is, even if many pairs separate right away, a sig-
nificant fraction can remain bound for times comparable
to the large scale eddy turnover time. The distribution
P(t4) has a marked peak only for quite small o values
and becomes flat as ro grows into the inertial range. From
the exponential behavior of the distribution, one may ex-
tract a characteristic time T, of the “bound phase” of the
pair dynamics. It grows with the initial separation r¢ as
shown in the inset of Figure 3; the functional form of this
growth is also exponential with a characteristic scale of
about 1/5th of the flow domain.

In Figure 4 we turn to the evolution of the distribu-
tion of pair separations with time in the point vortex flow
(starting from the smallest initial separation ro = 0.05
studied). The distribution quickly broads, possibly to
a stretched exponential at early times, as previously re-
ported in 2D [19] and 3D [15] experiments, numerical
studies [10, 16], and some statistical models [20, 21]. At
later times, P(r) flattens. The inset of Figure 4 displays
the evolution of the variance of P(r) compared to its
mean, and shows that the variance in pair spacing ex-
ceeds the mean value after very short times. The system

rapidly evolves to a state in which the mean is a poor
representation of the pair separation statistics. More-
over, the wide distribution of pair separations observed
is associated with a wide distribution of delay times (Fig-
ure 3), and these dominate further evolution of (r?) as
we have illustrated by the highly simplified uniform delay
time distribution model. While careful data analysis may
extract behavior tangent to scaling regimes [12, 15], fixed
time (r?)(t) or fixed scale (t)(r?) statistics are fundamen-
tally subdominant. This finding explains the elusive ev-
idence for scaling in previous work: successive trapping
by coherent structures generate a very wide distribution
of delay times which actually dominate the functional
form of the average separation rate. Scaling is not pre-
vented by a lack of inertial range dynamics, but is in-
stead blurred by intermittent dynamics which generate
the wide distribution of delay times.
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