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Although experimentally accessible energies can not probe ‘asymptopia’, recent measurements of‘
inelastic pp cross sections at the LHC at 7000 GeV and by Auger at 57000 GeV allow us to conclude
that: i) both σinel and σtot, the inelastic and total cross sections for pp and p̄p interactions, saturate
the Froissart bound of ln2 s, ii) when s → ∞, the ratio σinel/σtot is experimentally determined to
be 0.509 ± 0.021, consistent with the value 0.5 required by black disk at infinite energies, and iii)
when s → ∞, the forward scattering amplitude becomes purely imaginary, another requirement for
the proton to become a totally absorbing black disk. Experimental verification of the hypotheses of
analyticity and unitarity over the center of mass energy range 6 ≤

√
s ≤ 57000 GeV are discussed.

In QCD, the black disk is naturally made of gluons; our results suggest that the lowest-lying glueball
mass is 2.97 ± 0.03 GeV.

Introduction: We discuss the implication of three new measurements of the high energy pp inelastic cross sections,
σinel(

√
s), where

√
s is the cms (center of mass) energy. At

√
s = 7000 GeV, the Atlas collaboration [1] reports

σinel = 69.4±2.4 (expt.)±6.9 (extr.) mb, with (expt.) and (extr.) the total experimental and extrapolation errors. The
CMS collaboration [2], using a completely different technique, measures σinel = 68.0±2.0 (syst.)±2.4 (lum.)±4(extr.)
mb, where (syst.) is the systematic error, (lum.) the error in luminosity and (extr.) is the extrapolation error for
missing single and double diffraction events. Most recently, the Pierre Auger Observatory collaboration [3] reported a

measurement of σp−air
inel , the inelastic p-air cross section at

√
s = 57000±6000 GeV. This measurement, after correction

for a 25% He4 contamination in a cosmic ray beam consisting mostly of protons at that energy, was converted by a
Glauber calculation into the pp inelastic cross section [3], σinel = 90± 7 (stat.)± 9

11 (syst.)± 1.5 (Glaub.), with (stat.)
the statistical, (syst.) the systematic errors and (Glaub.) the estimated error in the Glauber calculation. With a
cosmic ray measurement at 57000 GeV it is likely that we are now experimentally as close to asymptopia (defined
here as the energy behavior of hadron-proton cross sections near s → ∞) as we will ever get.
Block and Halzen (BH) [4, 5] have made an analyticity constrained amplitude fit to lower energy data (6 ≤ √

s ≤
2000 GeV) that shows that σtot for p̄p and pp asymptotically saturates the Froissart bound [7]. This note exploits
the new higher energy measurements of σinel in order to make accurate predictions at asymptotia based only on
measurements of pp and p̄p cross sections in the energy range 6 ≤ √

s ≤ 57000 GeV. While the analyticity constrained
amplitude model of BH [4, 5] yields the total cross sections and the ρ-value, the ratio of real and the imaginary parts
of the forward scattering amplitude, an eikonal model, dubbed the ‘Aspen’ model [11], will be used to obtain the ratio
of the inelastic to total cross sections, r(

√
s) ≡ σinel(

√
s)/σtot(

√
s). We will show that the resulting ρ-value and the

ratio of σinel/σtot at
√
s = ∞ are consistent with the proton being an expanding black disk, presumably of gluons;

our fits to σinel and σel will allow us to infer a lowest-lying glueball mass of 2.97 ± 0.03 GeV. Furthermore, we will
show that both the Martin-Froissart bound [6, 7] on the pp and p̄p total cross sections and the Martin bound [9] on
the pp and p̄p inelastic cross sections are saturated, from 6 ≤ √

s ≤ 57000 GeV.
The Analytic Amplitude Model: Using this approach, BH was able to claim accurate predictions of the forward

pp (p̄p) scattering properties, σtot ≡ 4π
p Imf(θL = 0) and ρ ≡ Ref(θL=0)

Imf(θL=0) , using the analyticity-constrained analytic

amplitude model[5] that saturates the Froissart bound [7]; here f(θL) is the pp laboratory scattering amplitude with
θL, the laboratory scattering angle and p is the laboratory momentum. By saturation of the Froissart bound, we mean
that the total cross section σtot rises as ln

2 s. Furthermore the use of analyticity constraints allows one to anchor fits
at 6 GeV to the very accurate low energy cross section measurements between 4 and 6 GeV in the spirit of Finite
Energy Sum Rules (FESR)[10]. A local fit is made of the experimental values of σ± between 4 and 6 GeV, for both
p̄p and pp, from which BH [5] derive precise 6 GeV ‘anchor-points’ for σ± and their energy derivatives in Eq. (1). The
results are actually consistent with those obtained with old-fashioned FESR[8]. The model parameterizes the even
and odd (under crossing) cross sections and fits [5] 4 experimental quantities, σp̄p(ν), σpp(ν), ρp̄p(ν) and ρpp(ν) to the
high energy parameterizations

σ±(ν) = σ0(ν)± δ
( ν

m

)α−1

, (1)
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where the upper sign is for pp and the lower sign is for p̄p, and, for high energies, ν/m ≃ s/2m2. Here the even
amplitude cross section σ0 is given by

σ0(ν) ≡ βP′

( ν

m

)µ−1

+ c0 + c1 ln
( ν

m

)

+ c2 ln
2
( ν

m

)

, (3)

where ν is the laboratory energy of the incoming proton (anti-proton), m the proton mass, and the ‘Regge intercept’
µ = 0.5. The predictions for the pp and p̄p total cross sections are shown in Fig. 1. The dominant ln2(s) term in the
total cross section (Eq. (3)) saturates the Froissart bound [7]; it controls the asymptotic behavior of the cross sections.
BH made a simultaneous fit[5] to the pp and p̄p data for the ρ value, the ratio of the real to the imaginary forward
scattering amplitudes, shown in Fig. 2. From Eq. (2) and Eq. (3), we see that in the limit of s → ∞, ρ → 0 as 1/ ln s,
(albeit very slowly), a necessary condition for a black disk. Although the ρ-values are essentially the same for p̄p and
pp for

√
s > 100 GeV, at the highest accelerator energies, ρ only changes from 0.135 at 7000 GeV to 0.132 at 14000

GeV. Clearly, we are no where near asymptopia, where ρ = 0.
With two low energy constraints at 6 GeV and 4 parameters, precise values for c0 and βP′ could be obtained[5]. The

fitted values for the coefficients of σ0(ν) of Eq. (3) for the fit for 6 ≤ √
s ≤ 2000 GeV are listed in Table I. Evaluating

Eq. (3) at 57000 GeV, we predict σtot = 134.8± 1.5 mb for pp interactions. We note that c2, the coefficient of ln2(s),
is well-determined, having a statistical accuracy of ∼ 2%. Thus, experimental data show that the Froissart bound is
satisfied for total cross sections σtot for both p̄p and for pp in the energy interval 6 ≤ √

s ≤ 2000 GeV.

FIG. 1: The fitted total cross section, σtot, for p̄p (dashed curve) and pp (dot-dashed curve) from Eq. (1), in mb vs.
√
s, the

cms energy in GeV, taken from BH [5]. The p̄p data used in the fit are the (red) circles and the pp data are the (blue) squares.
The fitted data were anchored by values of σp̄p

tot and σpp

tot, together with the energy derivatives dσp̄p

tot/dν and dσpp

tot/dν at 6 GeV
using FESR, as described in Ref. [5]. The lowest (red) solid curve that starts at 100 GeV is our predicted inelastic cross section
from Eq. (5), σinel, in mb, vs.

√
s, in GeV. The lowest energy inelastic data, the p̄p (red) diamonds, were not used in the fit,

nor were the 3 high energy pp inelastic measurements, the (black) circle CMS value, the (green) square Atlas measurement
and the (blue) diamond Auger measurement. As clearly seen, our inelastic prediction from Eq. (5), which also asymptotically
behaves as ln2(s), is in excellent agreement with the new measurements of the inelastic cross section at very high energy.

TABLE I: Values of the parameters for the even amplitude, σ0(ν), using 4 FESR analyticity constraints (taken from Ref. [5])

c0=37.32 mb, c1=−1.440± 0.070 mb, c2=0.2817 ± 0.0064 mb, βP′ .=37.10 mb

Aspen Model: The Aspen model [11] is an eikonal model that describes experimental p̄p and pp data for σtot, ρ and
the slope parameter B ≡ d[ln dσel/dt]t=0, the logarithmic derivative of the forward differential elastic scattering cross
section, where t is the square of the 4-momentum transfer. Among many other quantities, it allows one to accurately
predict the ratio r = σel(ν)/σtot(ν), i.e., the ratio of the elastic to total cross section for both p̄p and pp, as a function
of energy, where again, the total cross sections have been anchored at 6 GeV by FESR constraints [10]. Details of
the model are given in Ref. [4, 11]. As is the case of the total cross sections, the values for r are essentially identical
for p̄p and pp for cms energies

√
s ≥ 100 GeV. The ratio r is plotted in Fig. 3. Again, we see that we are far from

asymptopia, where the black disk model implies a ratio r = 1/2, whereas at 57000 GeV, we predict r ∼ 0.32.
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FIG. 2: The fitted ρ-value, for p̄p (dashed curve) and pp (dot-dashed curve) from Eq. (1) vs.
√
s, the cms energy in GeV. The

p̄p data used in the fit are the (red) circles and the pp data are the (blue) squares.

FIG. 3: The r-value, the ratio of σel/σtot, vs.
√
s, the cms energy in GeV.

Predicting the inelastic cross section: We are now ready to predict σinel(ν) ≡ (1 − r(ν))σ0(ν) numerically for√
s ≥ 100 GeV, using r(ν) obtained above, together with the fitted even amplitude cross section σ0(ν) of Eq. (3)

determined by the parameters of Table I. We emphasize that our prediction of σinel does not use any inelastic

scattering data. Since the approach is at this point purely numerical, we decided to fit the inelastic numbers with the
same analytical parameterization as was used for the total cross section σ0(ν) in Eq. (3). The analytic expression for
our prediction of the even amplitude high energy inelastic cross section σ0

inel(ν) given by

σ0
inel(ν) ≡ βinel

P′

( ν

m

)µ−1

+ cinel0 + cinel1 ln
( ν

m

)

+ cinel2 ln2
( ν

m

)

(4)

= 62.59
( ν

m

)−0.5

+ 24.09 + 0.1604 ln
( ν

m

)

+ 0.1433 ln2
( ν

m

)

mb (5)

accurately reproduces the numerical values of σinel(ν) to better than 4 parts in 104 over the energy range 100 ≤ √
s ≤

100000 GeV. This new result for σ0
inel(ν) implies that the Froissart bound is also saturated for high energy inelastic

cross sections in the energy interval 100 ≤ √
s ≤ 57000 GeV, a result anticipated theoretically by Andre Martin [9],

using analyticity and unitarity. Figure 1 shows that our ln2(s) prediction of Eq. (5) for σ0
inel(ν), the lower (red) solid

curve, is in excellent agreement with all experimental data, up to the highest possible energy. The (red) diamonds,
are p̄p inelastic cross sections. The LHC 7000 GeV pp inelastic cross section data points are the (black) circle from
CMS [2] and the (green) square from Atlas [1], slightly separated for visual purposes. The (blue) diamond is the

Auger inelastic cross section [3] for a 25% He4 contamination of their σp−air
in cross section at 57000 GeV. We reiterate

that none of these experimental inelastic cross sections were used in our fits that predicted high energy inelastic cross
sections; our predictions at 7000 GeV are σinel = 69.0± 1.3 mb and at 57000 GeV, σinel = 92.9± 1.6 mb.
Evidence for a black disk: It is unlikely that there will ever be higher energy measurements for σinel for either p̄p

or pp collisions, yet our results show that present measurements are far from asymptopia. Nevertheless, the data give
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us a consistent picture of asymptopia by the compelling evidence that both the elastic and inelastic cross sections
saturate the Froissart bound. The addition of the inelastic cross section of Eq. (5) going as ln2 s now allows us to
explore asymptopia experimentally; we find the limit of σinel(s)/σtot(s) as s → ∞ simply by taking the ratio of the
ln2(s) terms in Eq. (5) and Eq. (3). We find the experimentally-determined value at infinity,

lim
s → ∞ σinel(s)

σtot(s)
=

cinel2

c2
= 0.509± 0.011, (6)

a result compatible with the ratio 1/2 predicted for a black disk. Satisfying this ratio of the inelastic to the total
cross section at infinity gives us the first experimental evidence that the proton becomes an expanding black disk at
asymptopia. We have already shown that the second condition, ρ = 0, i.e., the amplitude is imaginary, is also satisfied.
The model of Troshin [13] in which the elastic scattering dominates over the inelastic is thus falsified, whereas the
models [14, 15] in which the proton becomes a black disk asymptotically are now justified experimentally.
Properties of a black disk: In impact parameter space b, the elastic and total cross sections are given by

σel = 4

∫

d2b |a(b, s)|2, σtot = 4

∫

d2b Im a(b, s). (7)

The amplitude a(s, b) of the black disk of radius R is given by

a(b, s) =
i

2
, 0 ≤ b ≤ R, a(b, s) = 0, b > R, (8)

so that (for details, see Ref. [12])

σtot = 2πR2, σinel = σel = πR2,
σinel

σtot
= 0.5,

dσel

dt
= πR4

[

J1(qR)

qR

]2

, where q2 = −t. (9)

Magnitude of the ln2 s coefficient of the bound: Using analyticity and unitarity, Andre Martin has recently found a
more rigorous inelastic hadron-proton bound [9], using t = (2mπ)

2, i.e.,

σinel <
π

4m2
π

ln2 s, so that σtot <
π

2m2
π

ln2 s (10)

where for the total cross section bound we have invoked the black disk ratio of 2 to 1. The use of mπ in the two-particle
mass M = 2mπ is clearly wrong experimentally, since π

2m2
π

ln2(ν/m) = 31.23 ln2(ν/m) mb, whereas experimentally we

have obtained c2 ln
2(ν/m) = 0.2817 ln2(ν/m) mb, a cross section two orders of magnitude smaller, implying that the

scale is not set by the pion mass but by a mass scale one order of magnitude larger. ReinterpretingM = 2mπ in Eq. (10)

as the lowest-lying glueball mass which we call Mglueball, we find Mglueball = (2π/c2)
1/2

= 2.97± 0.03 GeV. Recent
fully relativistic and crossing symmetric AdS/QCD theories [16–18] may provide a link for our mass reinterpretation,
as well as providing new constraints on gravity. Finally, we note that lattice QCD using only gluons [19] predicts
the lowest-lying 1+− glueball state at MG = 2.940 ± 0.140 GeV, a result in tantalizingly close agreement with our
new mass scale. Obviously, the definition of our new scale is still arguable. Further, if the asymptotic proton is a
black disk of gluons, the high energy behavior is flavor blind and the coefficient of the ln2 s term is the same for all
reactions, from πp to γp scattering. Support for this claim comes from both the COMPETE group [20] and Ishida
and Igi [21].
Conclusions: We find that the ln2 s Froissart bounds for the proton for both σtot [7] and σinel [9] are saturated,

allowing us to determine at infinite s that: (1) the experimental ratio σinel/σtot = 0.509± 0.011, compatible with the
black disk ratio of 0.5 and (2) the forward scattering amplitude is purely imaginary. We thus conclude that the proton
becomes an expanding black disk at sufficiently ultra-high energies that are probably never accessible to experiment.
The theory for these bounds is predicated on the pillar stones of analyticity and unitarity, which have now been
experimentally verified up to 57000 GeV. Further, since σtot has been extrapolated up from the Tevatron, we expect
no new large cross section physics between 2000 and 57000 GeV. Finally, we infer that the lowest-lying glueball mass
is at Mglueball = 2.97± 0.03 GeV, very close to the lattice QCD value [19] of the lowest-lying 1+− state.
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