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In the inflationary scenario of loop quantum cosmology (LQC) in the presence of inverse-volume
corrections, we give analytic formulas for the power spectra of scalar and tensor perturbations
convenient to confront with observations. Since inverse-volume corrections can provide strong con-
tributions to the running spectral indices, inclusion of terms higher than the second-order runnings
in the power spectra is crucially important. Using the recent data of cosmic microwave background
(CMB) and other cosmological experiments, we place bounds on the quantum corrections.
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One of the motivations to search for a quantum the-
ory of gravity is the desire to unify general relativity
with quantum mechanics and, thereby, resolve classical
singularities such as the big bang or those associated
with black holes. Observational implications of quan-
tum gravity, however, present a delicate issue. Based
on dimensional grounds, cosmology in a nearly isotropic
setting seems to allow quantum corrections only as pow-
ers of the small quantity ℓPlH ≈ 10−10, where ℓPl is the
Planck length and H−1 = a/ȧ is the Hubble radius (a is
the scale factor in the flat Friedmann-Robertson-Walker
background and dots denote derivatives with respect to
cosmic time t). This dimensional argument is supported
by low-energy effective actions of higher-curvature type.

Dimensional arguments, generally, are overcome if
there are more than two dynamical scales of the same
dimension. Detailed physics rather than rough estimates
are then required to determine which geometric mean of
the scales is relevant in a given regime. In cosmology, an
additional distance scale L would allow a multitude of
dimensionless combinations ℓαPlH

βLγ with α−β+γ = 0,
not all of them small. Quantum gravity provides ample
motivation for the existence of a third scale, by suggest-
ing discrete spatial structures. While the discreteness
scale L is often expected to be near ℓPl, it is not identi-
cal to it and also depends on excitation levels of states
(rather than just Newton’s and Planck’s constants).

One explicit formulation of such a discrete version of
gravity is loop quantum gravity (LQG) [1]. Discrete-
ness arises on the space of metrics (geometrical oper-
ators acquiring discrete spectra). In a nearly homoge-
neous quantum space-time, one can think of any region
of volume V to consist of discrete patches, each roughly
of size L3 with the length L determined by an underly-
ing quantum-gravity state. Discrete spectra imply that
derivatives by L, as they ubiquitously appear in canon-
ical expressions via Poisson brackets, are replaced by fi-
nite difference quotients. As a simple example for so-

called inverse-volume corrections, (2
√
L)−1 = d

√
L/dL

would, when evaluated for discrete operators, become
(
√
L+ ℓPl −

√
L− ℓPl)/2ℓPl, which strongly differs from

(2
√
L)−1 for L ∼ ℓPl. For larger L, corrections are per-

turbative and of the order ℓPl/L; no factor of H appears.
The ratio ℓPl/L can easily be much larger than ℓPlH , ex-
plaining why this type of discreteness could give rise to
stronger quantum effects.

The results of detailed constructions in LQG, following
[2, 3], will be summarized momentarily. First, we em-
phasize that the discreteness does not break general co-
variance in the equations used here (assuming small cor-
rections). This has been demonstrated by an elaborate
analysis of the gauge contents of the quantum-corrected
theory, verifying the existence of a closed algebra of gauge
generators [4]. Covariance, and the space-time structure
it belongs to, is then not destroyed but deformed. (Defor-
mations of classical symmetries play an important role in
several approaches to quantum-gravity phenomenology
[5]. The deformations considered here are on a differ-
ent footing, however, because they do not refer just to
Poincaré transformations of Minkowski space.)

Here, using currently available data, we place con-
straints on inverse-volume corrections for inflation. Since
scalar/tensor perturbations are subject to strong modifi-
cations of the power on large scales, the corrections are
bounded from above. A detection of gravitational waves
and the precise measurement of CMB anisotropies in fu-
ture observations such as Planck will potentially allow us
to make a decisive test for LQC inflation.

A simplified implementation of corrections expected
from LQG in cosmological scenarios via perturbations
around homogeneous or other reduced models can be
achieved in LQC [6]. With a phenomenological approach
to effective dynamics, the cosmological equations can be
summarized in a single Mukhanov equation for the gauge-
invariant scalar perturbation uk, u

′′

k+(s2k2−z′′/z)uk = 0
[3] in momentum space with the comoving wavenumber



2

k, where primes denote derivatives with respect to con-
formal time τ =

∫

a−1 dt. Similarly, tensor modes are
subject to the equation w′′

k + (α2k2 − ã′′/ã)wk = 0 [7].
Here, z(a, ϕ) and ã(a) are background functions, and
α2 ≈ 1 + 2α0δPl and s2 = 1 + χδPl are the propaga-
tion speeds squared, differing from the speed of light by
quantum corrections.
The quantum corrections are characterized by (i) nu-

merical coefficients α0 and χ and (ii) the function δPl ∝
a−σ determining the size of inverse-volume corrections.
The values of α0, χ and σ are currently subject to
quantization ambiguities. χ is parametrized as χ =
σν0(σ/6 + 1)/3 + α0(5 − σ/3)/2, where ν0 is related to
α0 and σ by the consistency condition [3]

ν0(σ − 3) = 3α0(σ − 6)/(σ + 6) . (1)

While σ takes values in the range 0 < σ ≤ 6, the size of
δPl does not depend on the values of α0 and ν0. With
σ > 0, δPl is larger at early times, in agreement with
discreteness departing from the Planck scale in a more
classical universe. The aim of this paper is to restrict
δPl by observations. We will mainly place bounds on the
combination α0δPl during slow-roll inflation, for which
the precise origin of α0 and ν0 or the scale hidden in δPl

is not essential.
Corrections in the evolution equations arise only in the

k2-term, not in the time derivative of the d’Alembertian,
yet they are covariant according to the corrected gauge
transformations [4]. Thus, one typical assumption of
higher-curvature theories is violated. Moreover, the
propagation speed of tensor modes differs from the scalar
one since in general 2α0 6= χ. Again, this is only possible
with the change in the underlying manifold and gauge
structure, and gives rise to additional characteristic ef-
fects. With different types of equations for scalar and
tensor modes, there are changes to the standard infla-
tionary spectra and the tensor-to-scalar ratio.
In Ref. [3], two of us evaluated the inflationary observ-

ables in terms of the three slow-roll (SR) parameters ǫ =
−Ḣ/H2, η = −ϕ̈/(Hϕ̇), and ξ2 = (ϕ̈/ϕ̇)˙/H2, where ϕ is
a scalar field with potential V (ϕ). In order to place obser-
vational bounds on concrete inflaton potentials, it is more
convenient to use SR parameters expressed by V and
its derivatives: ǫV ≡ κ−2(V,ϕ/V )2/2, ηV ≡ κ−2V,ϕϕ/V ,
ξ2
V
≡ κ−4V,ϕV,ϕϕϕ/V

2 where κ2 = 8πG (G is the gravi-
tational constant). For conversion formulas from ǫ, η, ξ2

to ǫV , ηV , ξ
2
V
and all the technical details we refer to [8],

together with a discussion of cosmic variance.
The power spectra of scalar and tensor perturbations,

evaluated at the Hubble horizon crossing during inflation
(k ≈ aH), are given, respectively, by [3]

Ps =
GH2

πǫ
(1 + γsδPl) , Pt =

16GH2

π
(1 + γtδPl) , (2)

where γs = ν0(σ/6+1)+σα0/(2ǫ)−[σν0(σ+6)+3α0(15−
σ)]/[18(σ + 1)] and γt = (σ − 1)α0/(σ + 1). We expand

the scalar spectrum about a pivot wavenumber k0, as

lnPs(k) = lnPs(k0) + [ns(k0)− 1]x

+
αs(k0)

2
x2 +

∞
∑

m=3

α
(m)
s (k0)

m!
xm , (3)

where x = ln(k/k0), ns(k) − 1 ≡ d lnPs(k)/d ln k, and

α
(m)
s (k) ≡ dm−2αs/(d ln k)

m−2. The tensor spectrum
can be expanded in a similar way with a different in-
dex nt(k) ≡ d lnPt(k)/d ln k. While such expansions to
second order are standard in cosmology, terms of order
higher than two will become important in our analysis.
The spectral indices are

ns−1 = −6ǫV +2ηV −cns
δPl , nt = −2ǫV −cnt

δPl , (4)

with quantum-gravity corrections cns,t
= fs,t+ · · · whose

dominant contributions are fs ≡ σ[3α0(13σ−3)+ν0σ(6+
11σ)]/[18(σ+ 1)] and ft ≡ 2σ2α0/(σ + 1). For σ & O(1)
the variation of δPl is fast (δPl ∝ a−σ ∝ k−σ at Hub-
ble crossing), so that fs,t provide dominant contribu-
tions to the scalar and tensor runnings as well, αs,t(k0) ≡
dns,t/d ln k|k=k0

≈ σfs,tδPl(k0). Similarly, the m-th or-

der terms are α
(m)
s,t (k0) ≈ (−1)mσm−1fs,tδPl(k0) and

hence we can evaluate the sum in Eq. (3) as

∞
∑

m=3

α
(m)
s,t

m!
xm =

[

x

(

1− 1

2
σx

)

+
e−σx − 1

σ

]

fs,tδPl. (5)

This expression is valid for any value of σ and of the pivot
scale k0 within the observational range of CMB. Since
the LQC corrections to the runnings αs,t can be large,
inclusion of the higher-order terms (5) is important to
estimate the power spectra properly.
For the CMB likelihood analysis we also take into ac-

count the second-order terms of slow-roll parameters,
i.e. αs = −24ǫ2

V
+ 16ǫV ηV − 2ξ2

V
+ cαs

δPl and αt =
−4ǫV (2ǫV − ηV ) + cαt

δPl, where the dominant contri-
butions to cαs,t

correspond to cαs,t
≈ σfs,t. In the

numerical code, the full expressions of the coefficients
cns,t

and cαs,t
[8] are used. At the pivot scale k0 we

have the tensor-to-scalar ratio r(k0) ≡ Pt(k0)/Ps(k0) =
16ǫV (k0) + crδPl(k0), where cr = 8[3α0(3 + 5σ + 6σ2) −
ν0σ(6 + 11σ)]ǫV (k0)/[9(σ + 1)]− 16σα0ηV (k0)/3.
In the quasi-de Sitter background, δPl ∝ k−σ gives

the relation δPl(k) ≈ δPl(k0)(k/k0)
−σ = δPl(ℓ0)(ℓ/ℓ0)

−σ,
where ℓ are the CMB multipoles related to k via k ≈
(h/104)ℓ Mpc−1 (h ≈ 0.7 is the reduced Hubble con-
stant). With the large-volume expansion of quantum
corrections, we require that δPl(k) ≪ 1 at all scales.
For σ > 0 the LQC correction is most significant on the
largest scales observed in the CMB (ℓ = 2). This prop-
erty can be clearly seen in Fig. 1, where the pivot scale
for the scalar power spectrum is taken to be ℓ0 = 29.
Intuitively, this happens because the largest cosmologi-
cal scales correspond to those where and when spacetime
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FIG. 1. Primordial scalar power spectrum Ps(ℓ) for the case
n = 2, σ = 2, and ǫV (k0) = 0.009 with three different values
of δ(k0): 0 (classical case, dotted line), 7×10−5 (experimental
upper bound, solid line), 4.8×10−4 (1/10 of the a-priori upper
bound, dashed line). Here the pivot wavenumber is k0 =
0.002Mpc−1, which corresponds to ℓ0 = 29.

quantum effects were larger, while smaller scales have
been affected by ordinary physics. Imposing the condi-
tion δPl(ℓ = 2) ≪ 1, this gives

δPl(ℓ0) ≪ (2/ℓ0)
σ (6)

at the multipole ℓ0. For larger σ and ℓ0, δPl(ℓ0) is con-
strained to be smaller. We assume that inflation com-
pletely takes place in the large-volume regime, and that
longer-wavelength modes that might violate the bound
(6) do not enter the inflationary Fourier analysis.
For concreteness, let us consider the power-law poten-

tial V (ϕ) = λϕn, for which ǫV = n2/(2κ2ϕ2) and

ηV =
2(n− 1)

n
ǫV , ξ2

V
=

4(n− 1)(n− 2)

n2
ǫ2
V
. (7)

Among the variables σ, α0, and ν0 we have the rela-
tion (1), a condition under which, for given n and σ,
the inflationary observables can be expressed via ǫV and
δ ≡ α0δPl for σ 6= 3, or by ǫV and δ̃ ≡ ν0δPl for σ = 3.
We carry out the CMB likelihood analysis by varying

the parameters ǫV and δ in the Cosmological Monte Carlo
(CosmoMC) code [9]. We use the 7-year WMAP data
combined with large-scale structure, the Hubble constant
measurement from the Hubble Space Telescope, Super-
novae type Ia, and Big Bang Nucleosynthesis [10]. We
assume the flat ΛCDM model with no fraction of mas-
sive neutrinos in the dark matter density (fν = 0).
In the likelihood analysis, we vary the following 8 pa-

rameters: (i) baryon density today, Ωb; (ii) dark matter
density today, Ωc; (iii) the ratio of the sound horizon
to the angular diameter distance, θ; (iv) the reioniza-
tion optical depth, τ ; (v) δ(k0); (vi) ǫV (k0); (vii) Ps (k0);
(viii) the Sunyaev-Zel’dovich amplitude, ASZ. We take
the pivot wavenumber k0 = 0.002 Mpc−1 (ℓ0 ≈ 29) used

ε
V
 (k

0
)

δ 
(k

0)

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

FIG. 2. 2D marginalized distribution for the quantum-gravity
parameter δ(k0) = α0δPl(k0) and the slow-roll parameter
ǫV (k0) with the pivot k0 = 0.002 Mpc−1 for n = 2 and σ = 2.
The internal and external solid lines correspond to the 68%
and 95% confidence levels, respectively.

by the WMAP team. δ(k0) and ǫV (k0) are constrained
at this scale. While the bound on δ depends on the pivot
scale (and it tends to be smaller for larger k0), that on
(k0)

σδ(k0) does not.

While we assume a standard treatment of the reion-
ization with a smooth interpolation, more general reion-
ization scenarios can potentially affect constraints on ob-
servables especially for ns > 1 [11]. The analysis in [11]
show that the allowed region with ns < 1 is not strongly
modified, which is the case for our potentials.

The exponential term e−σx = (k0/k)
σ in Eq. (5) gives

rise to the enhancement of the power spectra on large
scales, as we see in Fig. 1. In this sense the LQC correc-
tions can be distinguished from the suppression effects
coming from the non-commutative geometry or string
corrections [12]. For σ & 3, the growth of the term e−σx

is so significant that δPl(ℓ) must be very much smaller
than 1 for most of the scales observed in the CMB, in
order to satisfy the bound δPl(ℓ = 2) ≪ 1. More pre-
cisely, LQC corrections manifest themselves mainly at
ℓ = 2, 3 where cosmic variance dominates, so it seems
implausible to isolate these effects. For σ < 3, the LQC
modification to the classical power spectra also affects
larger multipoles ℓ, and hence it is possible to constrain
it from CMB anisotropies.

In Fig. 2 we plot the 2D posterior distributions on the
parameters δ(k0) and ǫV (k0) with k0 = 0.002 Mpc−1 for
n = 2 and σ = 2. The two parameters are constrained to
be δ(k0) < 6.7×10−5 and ǫV (k0) < 0.013 (95% CL). The
modification of the large-scale power spectra (ℓ . 20)
shown in Fig. 1 leads to the upper bound on δ(k0). The
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FIG. 3. 2D marginalized distributions as in Fig. 2, but for
the case n = 2 and σ = 1.

condition (6) gives the prior δPl(ℓ0) ≪ 4.8 × 10−3 at
ℓ0 = 29, so that for α0 = O(1) the observational bound
is smaller by two orders of magnitude. For larger k0 the
observational upper bounds on δ(k0) tend to be smaller
for given σ. For k0 = 0.05 Mpc−1 and σ = 2 we find
that δ(k0) < 1.2 × 10−7 (95% CL), in which case the
theoretical expected amplitude (δPl(k0) ∼ 10−8 or a few
orders of magnitude higher [3]) can be accessible.
For smaller σ the observational upper bound on δ(k0)

tends to be larger, with milder enhancement of the power
spectra on large scales. In Fig. 3 we show the likelihood
results for σ = 1, in which case the LQC correction is con-
strained to be δ(k0) < 3.6× 10−2 (95% CL). Meanwhile,
the a-priori criterion (6) gives δPl(k0) ≪ 6.9× 10−2. For
α0 = O(1), the case σ = 1 is marginally consistent with
the combined SR/δPl truncation.
For σ . 1, the exponential factor e−σx does not change

rapidly with smaller values of fs,t, so that the LQC effect
on the power spectra would not be very significant even
if δ(k0) was as large as ǫV (k0). Our likelihood analysis
shows that the observational upper bound on δ(k0) ex-
ceeds the a-priori upper limit of δPl(k0) given by Eq. (6).
Since δ(k0) can be as large as 1, the validity of the ap-
proximation δ(k0) < ǫV (k0) used in the main formulas
may break down in such cases.
Under the conditions ǫV , δ ≪ 1, it follows that ǫV ≈

(κ2/2)(ϕ̇/H)2. Then the number of e-foldings during in-

flation is given by N ≡
∫ tf

t
dt̃H ≈ κ

∫ ϕ

ϕf

dϕ̃/
√

2ǫV (ϕ̃),

where ϕf is the field value at the end of inflation [de-
termined by the condition ǫV ≈ O(1)]. For the power-
law potentials one has N ≈ n/(4ǫV ) − n/4, which gives
ǫV ≈ n/(4N+n). For n = 2, the theoretically constrained
range 45 < N < 65 corresponds to 0.008 < ǫV < 0.011.
The probability distributions of ǫV in Figs. 2 and 3 are
consistent with this range even in the presence of the

LQC corrections, so the quadratic potential is compati-
ble with observations as in standard cosmology.

In summary, in inflation combined with LQC inverse-
volume corrections we provided general formulas for the
scalar and tensor power spectra and placed observational
bounds on the size of corrections for a quadratic poten-
tial. In [8] we ran the CosmoMC code also for other
potentials such as V ∝ ϕ4 and V ∝ e−λϕ (for which
the inflationary observables reduce, again, to δ and ǫV ).
We found that the observational upper bounds are prac-
tically independent of the inflaton potentials. This is
because the LQC correction is approximately given by
δPl(k) ≈ δPl(k0)(k/k0)

−σ, which only depends on σ and
the pivot scale k0. Interesting and nontrivial effects do
arise from the modified spacetime structure underlying
the dynamics. Even though quantum-geometry correc-
tions are small, they can significantly change the run-
nings of spectral indices. Thus, the observational bounds
on δPl can be much closer to theoretical values (O(10−8))
than often thought in quantum gravity. Our new tech-
niques set the stage for systematic and stringent phe-
nomenological evaluations.
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