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We generalize the Noziéres-Schmitt-Rink (NSR) method to study the repulsive Fermi gas in
the absence of molecule formation, i.e., in the so-called “upper branch”. We find that the system
remains stable except close to resonance at sufficiently low temperatures. With increasing scattering
length, the energy density of the system attains a maximum at a positive scattering length before
resonance. This is shown to arise from Pauli blocking which causes the bound states of fermion pairs
of different momenta to disappear at different scattering lengths. At the point of maximum energy,
the compressibility of the system is substantially reduced, leading to a sizable uniform density core
in a trapped gas. The change in spin susceptibility with increasing scattering length is moderate
and does not indicate any magnetic instability. These features should also manifest in Fermi gases
with unequal masses and/or spin populations.
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Since the early days of quantum many-body theory, the
Fermi gas with a repulsive short range interaction char-
acterized by a positive scattering length has been used
as the primary example of a Fermi liquid state[1]. The
discovery of BEC-BCS crossover[2], however, shows that
the ground state of cold atoms with positive scattering
length is a molecular condensate i. e., the Fermi liquid
state is metastable. In the last two years, after ref. [3]
reported the evidence of Stoner ferromagnetism, there
has been increased interest in the nature of uncondensed
Fermi gas (free of molecules) in the strongly interacting
regime. Such systems have been referred to as the “up-
per branch” Fermi gas, and the molecular condensate as
the “lower branch”.

Theoretical studies have found both ferromagnetic
transition as well as its absence.[4] Though seldom em-
phasized, the upper branch Fermi gas in the strongly in-
teracting regime has been studied by many experimental
groups[5, 6] at higher temperatures with different den-
sities and trap depths, all of them observed similar fea-
tures in atom loss as in ref. [3] (see ref. [7]). In ref. [6],
the energy derivative ∂E/∂(−a−1

s ) is found to increase
and then decrease as one approaches the resonance from
the repulsive side, showing a maximum before reaching
resonance. The decrease is puzzling for it appears to vio-
late the adiabatic relation of Tan[8]. This feature has also
been reported by other groups at higher temperatures[9].
Since the Fermi gas is unlikely to be ferromagnetic in the
temperature regime of these earlier experiments, it leads
to a natural and intriguing question on the nature of the
repulsive gas in the strongly interacting regime.

The key obstacle in theoretical studies of the upper
branch Fermi gas is to find a proper mathematical de-
scription of the “upper branch”. There is no precise for-
mulation of it to the best of our knowledge. Fortunately,
the meaning of upper branch is well defined in the high
temperature regime, as the second virial coefficient b2 is
made up of a bound state contribution and an extended

(or scattering) state contribution, b2 = bbd2 +bsc2 . The up-
per branch corresponds to excluding the molecular state
by setting bbd2 = 0. In addition, any description of the up-
per branch must also recover the weak coupling results[1].

Here we generalize the approach of NSR[10], which we
call the excluded molecular pole approximation (EMPA),
to study the upper branch Fermi gas. It amounts to ob-
taining the thermodynamics in a Gaussian fluctuation
theory[11] by excluding the contribution from the molec-
ular states. This approach recovers the rigorous high
temperature results and the results of Galitskii[1] in the
weak coupling limit. Applying this method to lower tem-
peratures and the strongly interacting regime, we find the
following: (I) On approaching the resonance from the re-
pulsive side at a fixed temperature T , the energy den-
sity E attains a maximum at a positive scattering length
(asm) prior to resonance, as seen in experiments.[6, 9]
The theory also explains the subsequent fall in the en-
ergy density with increasing as (violation of the adia-
batic theorem of Tan). (II) The compressibility κ at-
tains a minimum at asm (where E is maximum). The
small compressibility implies a core of almost uniform
density at the centre of the trap. (III) The spin sus-
ceptibility χ attains a maximum at the location of the
energy maximum, i. e., at asm; it shows only a moderate
variation over the entire range of as, without any sign of
a magnetic instability.

EMPA for the Upper Branch Fermi Gas: Let us first
recall that in the low fugacity regime [12], the equation of
state is n(T, µ) = no(T, µ) + ∂∆P/∂µ, where no(T, µ) is
the density of an ideal gas, ∆P (T, µ) = T (

√
2/λ)3z2b2

is the interaction contribution to the pressure, λ =√
(2π/mT ) is the thermal wavelength, and z = eµ/T is

the fugacity (~ = kB = 1), µ is the chemical potential,
m is the fermion mass. The second virial coefficient b2 is
made up of a bound state contribution bbd2 and a scatter-
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ing state contribution bsc2 , b2 = bbd2 + bsc2 ,

bbd2 = e|Eb|/T , bsc2 =

∫ ∞
0

dω

π
e−ω/T

dη

dω
, (1)

and −|Eb| = −(ma2
s)
−1 is the energy of the bound state,

and η is the phase shift. Interaction contribution to the
equation of state ∆n(T, µ) = n(T, µ)−no(T, µ) can there-
fore be written as ∆n = ∆nbd + ∆nsc, where

∆nα(T, µ) =

(√
2

λ

)3

bα2T
∂z2

∂µ
, α = bd, sc. (2)

Next we recall that in the NSR approach[10], the inter-
action contribution to the density ∆n(µ, T ) = n(T, µ)−
no(T, µ) is

∆n(T, µ) = − 1

Ω

∑
q

∫ ∞
−∞

dω

π
nB(ω)

∂argM(ω+, q)

∂µ
, (3)

where Ω is the volume, no(T, µ) = 2
Ω

∑
k nF (ξk), is the

density of a two-component ideal Fermi gas, nF (ω) =
1/(eω/T + 1), ξk = εk − µ, εk = k2/2m, nB(ω) =
1/(eω/T − 1), and M(ω+, q) is negative inverse of the
two particle T -matrix in the medium, of the form

M(ω+, q) = − 1

4πas
+ L(ω+, q) (4)

L(ω+, q) =
1

Ω

∑
k

(
γ(k; q)

ω+ − ξ q
2 +k − ξ q

2−k
+

1

2εk

)
, (5)

γ(k; q) = 1−nF (ξ q
2 +k)−nF (ξ q

2−k) describes Pauli block-
ing of pair fluctuations. In the extreme dilute limit,
γ(k; q) reduces to 1, −M−1 to the two-body T -matrix,
and the phase angle ζ(ω, q) ≡ argM(ω+, q) to the neg-
ative of the two-body phase shift η(ω − ω(q)), where
ω(q) = q2/4m− 2µ, q = |q|.

For a given q, the value of ζ(ω, q) depends on the lo-
cation of the branch cut and the poles of M−1(ω+, q). It
is clear from Eq.(4) and (5) that the branch cut is given
by ω > ω(q). Should M−1(ω+, q) have a pole, say at
ωb(q) < ω(q), then we have

ω > ω(q), ζ(ω, q) = tan−1

(
ImL(ω, q)

− 1
4πas

+ ReL(ω, q)

)
(6)

ωb(q) < ω < ω(q), ζ(ω, q) = −π, (7)

ω < ωb(q), ζ(ω, q) = 0. (8)

Otherwise, Eq.(7) and (8) are replaced by

ω < ω(q), ζ(ω, q) = 0. (9)

Eq.(3) can then be written as ∆n(T, µ) = ∆nbd(T, µ)+
∆nsc(T, µ),

∆nbd(T, µ) = − 1

Ω

∑
q

nB(ωb(q))
∂ωb(q)

∂µ
(10)

∆nsc(T, µ) = − 1

Ω

∑
q

∫ ∞
ω(q)

dω

π
nB(ω)

∂ζ(ω, q)

∂µ
. (11)
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FIG. 1. (Color online) (a) Position of pole ωb(q) in ω − q
plane for a given as: The solid line denotes the curve ω(q) =
q2/(4m) − 2µ. The pole position ωb(q) is the solution of the
equation ReM(ω+, q) = 0 (see eqn. (4)), where Pauli block-
ing is described by γ(k; q). For as > 0, the T -matrix of a
two-body system will have a pole of energy |Eb| below ω(q)
(dotted line). In a many body system, Pauli blocking will sup-
press formation of molecular bound states. The suppression
is strongest for pairs with total momentum q = 0 and is less
strong for larger q. As a result, the pole position changes to
that indicated by the dashed blue curve. (b) The critical scat-
tering length acs(q) at T = 3EF (see (B) in Summary of Re-
sults). A fermion pair with total momentum q (referred sim-
ply as “q-pair”) can have a bound state only when as < acs(q),
i. e., to the left of the curve. As as increases and crosses acs(q)
from left to right, a q-pair will lose its bound state, and the
energy of the scattering state of this pair will jump downward
abruptly (see fig. 4).

That we use the same superscript in Eq.(10) and (11)
as in the high temperature case is because they reduce
to Eq.(2) in the low fugacity regime. Thus, by continu-
ity, the extension of the upper branch Fermi gas to lower
temperature is to exclude the contribution of the molec-
ular bound pole term (Eq.(10)) to ∆n(T, µ). Hence the
name EMPA. The equation of state within EMPA is then

n(T, µ) = no(T, µ) + ∆nsc(T, µ). (12)

Inverting the relation n = n(T, µ) to obtain µ = µ(n, T ),
one can obtain all thermodynamic potentials as a func-
tion of n and T .

Note that Eq.(12) involves only integrating over the
area ω > ω(q) (i. e., above the solid curve in Fig. 1(a))
with an integrand given explicitly by Eq.(6). There is
no need to obtain the pole structure as far as evaluating
Eq.(12) is concerned. There is, however, a close connec-
tion between the interaction energy of scattering state
and the presence of a pole. Understanding the distribu-
tion of poles in the ω-q plane is therefore essential for the
elucidation of the results presented below.
Summary of Results:
(A) Phase Diagram: Fig. 2 displays the “phase diagram”
of the upper branch Fermi gas. All regions except the re-
gion in dark grey are stable (κ, χ > 0). The solid line
that ends at K is the boundary of vanishing compress-
ibility κ = 0. The dashed line above K describes asm
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FIG. 2. (Color online) Upper branch “phase diagram”. The
point K corresponds to (−1/kF as = −0.435, T = 2.85EF ).
The solid blue line ending at K is a locus of states with a
vanishing compressibility. The dashed curve starting at K
shows asm (see text). The region hatched in dark grey is
mechanically unstable. Tan’s adiabatic theorem is violated in
the region shaded in light grey.

where the energy attains a maximum at a fixed temper-
ature. Across this line, µ, κ, χ, and energy density E
are continuous but their slopes undergo sharp changes.
These discontinuous slopes, however, may disappear if
beyond Gaussian fluctuations are included. Crossing the
solid line below the point K, the quantities µ, P , κ,
χ, and E undergo discontinuous changes; the system
is mechanically unstable. The white and light grey re-
gions correspond to regimes with ∂E/∂(−a−1

s ) > 0 and
∂E/∂(−a−1

s ) < 0 respectively. In the light grey region,
Tan’s adiabatic theorem is violated (see below).

(B) Energy Density E: Fig. 3(a) shows the behavior of
energy density E as a function of kFas at T = 3TF . It
exhibits a maximum at kFasm = 2.61, (which falls on the
dashed line in Fig. 2). Such a maximum feature is con-
sistent with the early observation by Salomon’s group[6]
at high temperatures, as well as in ref.[3] at lower tem-
peratures. The maximum behavior implies that there
is a region of kFas (the light grey region in Fig. 2)
where the adiabatic theorem, ∂E/∂(−a−1

s ) > 0 is vio-
lated. The resolution of this puzzle is that the relation
between ∂E/∂(−a−1

s ) of the scattering state and the con-
tact density is ill-defined at the scattering length where
a molecular bound state disappears.

This is best seen in the two-body case (see Fig. 4),
where the energy of the scattering state of a fermion
pair with total momentum q (referred to as “q-pair”)
jumps downwards suddenly when as passes a critical
value ((acs)

−1 = 0 in this case) at which the molecular
bound state on the side as < (acs)

−1 disappears. In the
many-body case, due to Pauli blocking (γ(k; q) 6= 1), dif-
ferent q-pairs will form bound states at different critical
scattering lengths acs(q) (which is the lowest value of as
such that the equation ReM(ω, q) = 0 has a solution).
Since Pauli blocking effect is strongest for the q = 0
molecular bound state (Fig. 1(a)), and is less significant
as q increases, (acs(q))

−1 is largest at q = 0 and decreases
monotonically as q increases. The behavior of acs is shown
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FIG. 3. (Color online) (a) Energy density (E) and (b) com-
pressibility (κ) and susceptibility (χ) as a function of the scat-
tering length at T = 3EF . All quantities are measured in
units of their respective values of the noninteracting gas (in-
dicated by the subscript o) at the same temperature.

in Fig. 1(b), and asm ≡ acs(q = 0).

That ∂E/∂(−a−1
s ) < 0 for the upper branch Fermi gas

sufficiently close to resonance is now clear. As as passes
through acs(q) from the left, the molecular bound state of
a q-pair disappears because of Pauli blocking. Up on this
disappearance, the energy of the scattering states of this
pair suddenly jumps down, thereby causing the energy
to decrease. As as continues to increase, q-pairs with
successively higher total momentum q lose their bound
states, inducing a successive downward jump in the en-
ergies of the scattering states of these pairs, and hence
a negative derivative ∂E/∂(−a−1

s ) < 0. Since asm is de-
termined only by Pauli blocking, it should be a universal
function of T and n i.e., kFasm = f(T/EF ), where f is
a dimensionless function (dashed line in Fig. 2).

Our explanation above might lead one to think that
the energy decreasing process will cease when no more
q-pairs lose their bound states, which occurs at as =∞.
The reality, however, is that the minimum of E , which
signifies the ceasing of energy decrease as as increases
beyond asm, occurs at a scattering length prior to res-
onance. The reason is that in order to have an energy
decrease caused by the scattering state of a q-pair, this
pair state has to be occupied. At lower temperatures,
the probability of occupation of such pair states is low
especially for those pairs with high q, thereby causing
the energy decrease to cease at an (as)min prior to reso-
nance. As T increases, ((as)min)−1 approaches 0.

(C) Compressibility κ: As as increases, a repulsive Fermi
gas is expected to become less compressible. For tem-
peratures above that of point K in Fig. 2, κ attains a
minimum at as = asm (see Fig. 3(b)). Our calculation
shows, for temperatures lower than that of K, κ→ 0 as
one approaches the solid line in Fig. 2 from the left. The
system behaves like a hard core Fermi gas with a core
size close to inter-particle spacing. There is, however,
an important difference between a hard core Fermi gas
with core size equal to as ≈ k−1

F and the actual atomic
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FIG. 4. (Color online) The discontinuous change of the energy
of the scattering state (solid line) of a two body system up
on the disappearance of the molecular bound state (double
line).[12] Similar phenomena occur in a q-dependent fashion
in the many body setting.
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FIG. 5. (Color online) Comparison of densities of strongly
interacting and weakly interacting gases in a spherical trap.
Eo

F corresponds to the density at the trap centre. For each
temperature, the number of atoms in both the strong and
weak cases is the same. A “flat-top” density profile is evident
in the strong case, and becomes more pronounced at lower

temperatures. The radius r is in units of

√(
2E0

F
mωt

)
(ωt - trap

frequency).

Fermi gas. In the former case, the effective range is also
of order kF , whereas the effective range in atomic gases
is much less than the inter-particle spacing, independent
of the value of as. The diminished compressibility has
a dramatic effect on the density profile. This leads to
clouds with little variation of density at the centre, an
effect that becomes more pronounced at lower tempera-
tures (see Fig. 5).

On crossing the solid line in Fig. 2, the compressibility
κ jumps to a positive value and stays positive. Such a
state will not be stable in a trap owing to the concomi-
tant mechanical instability, leading possibly to phase sep-
aration. At even lower temperatures, we find instability
towards pair formation (see also Pekker et.al.[4]).

(D) Spin Susceptibility χ: Fig. 3(b) also shows the spin
susceptibility χ at T = 3EF . Note that χ changes at
most by 40 percent over the entire kFas range, and
only moderately in the experimentally relevant range
0.5 < kFas < 2. We do not see a diverging suscepti-
bility indicative of a magnetic transition.

Finally, while Gaussian theory is less accurate at low

temperatures as fluctuations beyond Gaussian become
increasingly important, the physics of switching branches
and Pauli blocking, which is the origin of the violation
of the adiabatic relation in the upper branch, remains
at all temperatures. Although our discussion focused on
the equal-mass spin- 1

2 Fermi gas, these features should,
therefore, be generic to other upper branch Fermi gases
such as those with mass-imbalance and (over a range of)
spin-imbalance.
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