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Single-molecule pulling experiments on the folding of biomolecules are usually interpreted with
one-dimensional models in which the dynamics occurs on the “pulling coordinate”. Paradoxically,
the free energy profile along this coordinate may lack a refolding barrier, yet a barrier is known
to exist for folding: thus it has been argued that pulling experiments do not probe folding. Here,
we show that transitions monitored in pulling experiments probe the true folding barrier, but that
the barrier may be hidden in the projection onto the pulling coordinate. However, one-dimensional
theory using the pulling coordinate still yields physically meaningful energy landscape parameters.

Single molecule force experiments are a powerful tool
for revealing details of the folding free energy landscape
of proteins and nucleic acids inaccessible to ensemble
methods[24]. Precise measurements at low force have
revealed hopping between two or more metastable states
with different molecular extensions, attributed to force-
dependent folding and unfolding [25–28]. A quantitative
description of this dynamics is challenging because it oc-
curs on a complex high-dimensional energy landscape.
To enable interpretation of single-molecule pulling ex-
periments, the complexity is usually reduced by invoking
one-dimensional (1D) models, in which the original dy-
namics is projected onto a single coordinate - the molecu-
lar extension, or “pulling coordinate” [29, 30]. Projection
of the full energy landscape onto a 1D coordinate yields
a free energy profile, or potential of mean force (PMF)
[31]. A remarkable simplification occurs if the projected
dynamics can be described as diffusion on this 1D PMF,
as folding energy landscape theory suggests is possible
for certain collective coordinates [32]. However, though
a 1D PMF is formally defined for an arbitrary coordinate,
diffusion on this coordinate may not, in general, capture
the folding dynamics accurately; therefore interpretation
of the PMF as an energy landscape may be misleading.

Using a 1D model with the pulling coordinate as reac-
tion coordinate, it has been argued that “hopping” phe-
nomena seen in experiments on single molecules under
stretching force do not reflect true folding events, but
rather downhill collapse of the unfolded polymer [33].
This conclusion rested on the lack of a barrier in the
1D PMF for the pulling coordinate at zero force, with a
barrier only emerging once the energy profile is tilted by
the applied force. Thus, it was suggested that observed
hopping events are experimental artifacts [33].

Here, we use molecular simulation to investigate the
role of force on the hopping phenomena observed in single
biomolecules held under a stretching force. We show that
at zero force the 1D PMF for the pulling coordinate may
indeed lack a refolding barrier, in accord with the intrigu-
ing proposal by Fernandez and colleagues [33]. However,
we find that this is not because the barrier does not exist,

but because it is hidden by overlap with the folded and
unfolded states in the projection onto the pulling coordi-
nate. The barrier is clearly visible in the PMF for a good
folding coordinate, and “hopping” occurs over the same
barrier as that probed by pulling experiments. Therefore,
the hopping phenomena observed in experiments are true
folding events. Remarkably, 1D kinetic models based on
the pulling coordinate provide meaningful parameters of
the energy landscape even when the pulling coordinate
is a poor reaction coordinate.

As prototypical examples, we study the 56-residue pro-
tein G and a 44-residue RNA hairpin, similar to sys-
tems studied in pulling experiments [26, 34]; an alterna-
tive hairpin is presented in ESI. We use a coarse-grained
molecular model, with a Gō-like potential, for each
molecule. The model for protein G has been previously
described [35] and the nucleic acid model is described
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FIG. 1. Equilibrium folding of protein G at zero force pro-
jected onto the x1−56 pulling coordinate (top) and onto the
folding coordinate Q (bottom). Left: trajectories x1−56(t)
and Q(t) both revealing hopping at zero force; Centre: the
corresponding 1D PMFs G(x1−56) and G(Q); Right: the con-
ditional probability of being on a transition path for a given
value of the coordinate, p(TP|x1−56) and p(TP|Q). Broken
red line indicates theoretical maximum of p(TP|Q),p(TP|x).
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FIG. 2. 2D free energy landscapes G(Q, x). Folding free energy surfaces at zero force for (A) protein G, G(Q, x1−56), (B)
protein G, G(Q, x10−32), (C) RNA hairpin, G(Q, x1−44) and for corresponding systems at forces of (D) 1.75 kBT/nm, (E) 2.5
kBT/nm, (F) 0.5 kBT/nm. 1D PMFs for the pulling coordinate x and fraction of native contacts Q are shown on the front and
right faces respectively. The approximate positions of the true folded, unfolded and transition states are indicated by green,
blue and red arrows on the 2D G(Q, x) and 1D PMFs G(Q), G(x). The folded structure and pulling coordinate are illustrated
next to the matching energy surfaces.

in ESI. An advantage of such models is that free energy
surfaces can be constructed from this detailed molecu-
lar representation without assuming[33] phenomenologi-
cal energy surfaces.

We generate Langevin dynamics trajectories of the full
protein and RNA molecular models in the presence of an
added “pulling” potential V (x) = −Fx, where x is the
pulling coordinate and F the force. In Fig. 1, we monitor
the folding of protein G projected onto two different coor-
dinates: either the fraction of native contacts, Q, effective
for monitoring folding in simulations [37], or the pulling
coordinate (x1−56, for pulling on residues 1 and 56) itself.
Folding is often described as 1D diffusion along such re-
action coordinates [32], characterized by a 1D free energy
profile, or PMF, and a diffusion coefficient D (possibly
position-dependent)[38]. The PMF for Q (Fig. 1), given
by G(Q) = − ln

∫
exp(−V (R))δ(Q − Q(R))dR, where

V is the potential energy and R the 3N coordinates of
the protein, reveals the expected free energy minima for
the unfolded state (low Q) and folded state (high Q),
separated by a barrier. However, the form of the PMF
G(x1−56) for the pulling coordinate is unusual, with a
single folded energy minimum and a very broad unfolded
state with a vanishing barrier to refolding. While a bar-
rier may not be needed for two-state folding in higher
dimensions[39], lack of a barrier in 1D seems unexpected.

To resolve the paradox of a barrier appearing in G(Q)

but not in G(x), we construct the two-dimensional (2D)
free energy landscape G(Q, x1−56), shown in Fig. 2A,
where 2D umbrella sampling has been used to probe ac-
curately the high free energy regions[35]. Two low free-
energy regions are seen, a narrow folded minimum at
high Q and low x (green arrow) and a broad unfolded
minimum at low Q (cyan arrow); the unfolded minimum
is consistent with the end-end distribution of a worm-
like chain with persistence length 0.6 nm for the protein
and 2.0 nm for the RNA, similar to experimental val-
ues (see ESI). Note that the pulling coordinate does not
reliably separate folded and unfolded states in the ab-
sence of force, since there is a significant probability of
unfolded and folded chains with similar extensions [40].
Notable is the location of the barrier, at intermediate Q,
but very small x (red arrow). This explains the presence
of the barrier in Q (PMF G(Q), shown on right face of
Fig. 2A), where it is separated from unfolded and folded
states, and the absence of one in x (PMF G(x) shown on
front face of Fig. 2A), where it is hidden in the projec-
tion by the lower free energy of the folded and unfolded
states. Also shown in Fig. 2 are free energy surfaces for
protein G for a different pulling coordinate (x10−32, Fig.
2B), and for the hairpin pulled from the termini (Fig.
2C). Although the location and height of the barrier dif-
fer, the same general features appear: a barrier is visible
on Q but hidden by the folded and unfolded states on x.
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The overlap of the folded, unfolded and transition
states on the pulling coordinate renders it a poor reac-
tion coordinate at zero force. We quantify how well a
coordinate ζ separates the transition state from stable
states using a Bayesian criterion[41] p(TP|ζ), the prob-
ability of being on a transition path, rather than in the
folded or unfolded state, for a given value of ζ. For a
good coordinate, transition states will be collected at a
single value of ζ‡, where the value of p(TP|ζ) will be near
the theoretical maximum of 0.5. By this measure, Q is
a good coordinate (Fig. 1, bottom right), while x1−56 is
clearly a poor coordinate at zero force (Fig. 1, top right).

The 2D free-energy surfaces show that the lack of a
barrier in the 1D PMF for x at zero force is due to x be-
ing a poor reaction coordinate at zero force and not be-
cause of the nonexistence of a barrier. This deficiency of
the pulling coordinate raises a question over the interpre-
tation of single molecule experiments, where 1D models
are widely employed; 2D models have only recently been
proposed [30, 43, 44] and require more parameters. We
discuss two possible scenarios: in the first, 1D models are
justified because it only takes a small force to shift the
“softer” unfolded state and transition state to larger ex-
tensions and thus reveal all three states in the PMF along
x. This scenario is illustrated by protein G pulled along
the x10−32 coordinate: the barrier, being clearly visible
on the 2D landscape but lost in the projection on x (Fig.
2B), moves to larger extensions at low force such that
its location on the 1D PMF along x soon coincides with
the true location on the 2D landscape (Fig. 2E). At these
forces x becomes a better coordinate [42]; further increas-
ing force reveals “Hammond behaviour” (as also expected
for 1D models), where the transition state moves toward
the folded state and the two eventually merge as the bar-
rier to unfolding vanishes. A similar scenario is observed
for the hairpin (Fig. 2C,F). In the second scenario, force
has little effect on the displacement of the “stiffer” tran-
sition state from the folded state. This scenario is illus-
trated by protein G pulled along the x1−56 coordinate,
where shearing of antiparallel β-strands results in a much
“stiffer” transition state. Because in this scenario x re-
mains a poor reaction coordinate up until higher force,
justification of 1D models appears less straightforward.

To investigate the implications for interpreting kinetic
data typically available in experiments, we have studied
force-dependent folding and unfolding kinetics using both
equilibrium molecular simulations of the full Gō mod-
els, and Brownian dynamics (BD) simulations on the
molecular free energy surfaces in Fig. 2. Good agree-
ment between the kinetics obtained by the two methods
(Fig. 3) confirms that the 2D landscape captures essen-
tial features of the unprojected energy landscape. The
(un)folding kinetics from the BD simulations fit well in
all cases to the 1D theory of force-dependent kinetics[29]
(Fig. 3). For the first scenario above, a good fit of the
1D theory might be expected, since force quickly makes
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FIG. 3. Folding (filled symbols) and unfolding (empty sym-
bols) lifetimes for Protein G with (A) x1−56 and (B) x10−32

pulling coordinates and (C) for the hairpin. Black squares:
Gō model simulations; red circles: 2D Brownian dynamics
simulations; lines: fits to a one-dimensional theory[29].

TABLE I. Fits of folding and unfolding kinetics in Fig. 3 to
1D theory [29] for the dynamics on the x-coordinate, using
ν = 2/3. Numbers in italics were fixed to values based on
the energy landscape. ∆x‡ is the difference in x between the
transition state and reactant (folded/unfolded) state.

Molecule, coord. process ∆x‡ ∆G‡ τ0
[nm] [kBT ] [µs]

Prot. G, x1−56 folding −3.12± 0.19 0.86± 0.28 0.06± 0.01
Prot. G, x1−56 unfolding −0.10± 0.06 6.0 2.11± 0.36
Prot. G, x10−32 folding −1.39± 0.04 1.05± 0.19 0.06± 0.01
Prot. G, x10−32 unfolding 0.42± 0.03 6.0 1.90± 0.32
Hairpin, x1−44 folding −7.01± 0.21 1.43± 0.36 0.17± 0.04
Hairpin, x1−44 unfolding 1.45± 0.10 6.0 1.29± 0.31

x a good coordinate and the effect of higher dimensions
is weak. Indeed, if x becomes a good coordinate upon
application of force, then the fitted parameters (Table I)
do literally correspond to the 1D PMF on x, since force
simply tilts this PMF. However, the meaning of the 1D
parameters for the second scenario is less clear: indeed,
the parameters for x1−56 are clearly inconsistent with the
formal 1D G(x1−56) (Fig. 2A, front face), as the fitted
transition state displacement is negative (-0.1 nm, see
Table I), indicating that the barrier is shorter than the
folded state – obviously impossible in a 1D PMF.

Remarkably, we find instead that the parameters from
a fit to 1D theory (Table I) correspond to the location and
height of the true barrier, i.e. that resolved on the 2D free
energy surface. This can be understood if the dynamics
of x is fast relative to that of Q [35] (note that x can be
fast even though dynamics of the pulling apparatus, to
which the molecule is attached by a linker, may be slow
[45]). In this case, the folding dynamics is faithfully cap-
tured by the force-dependent 1D PMF for Q, G(Q;F ),
defined by exp[−G(Q;F )] =

∫
exp[−G(Q, x) + Fx]dx,

and (un)folding times can be calculated from 1D Kramers
theory applied to G(Q;F ). Next, note that the Kramers
rate expression in terms of Q can be transformed to one
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in terms of an effective extension x̄, given by

exp[Fx̄(Q)] = 〈exp[Fx]〉Q (1)

where 〈exp[Fx]〉Q denotes the average of exp[Fx] for a
fixed Q over the distribution at zero force [46]. The
Kramers expression for τ(F )/τ(0) using x̄ becomes iso-
morphic with that for dynamics on x [29] (see ESI):

τ(F )

τ(0)
=

∫
∪ e
−G(x̄)+Fx̄dx̄

∫
∩ e

G(x̄)−Fx̄dx̄∫
∪ e
−G(x̄)dx̄

∫
∩ e

G(x̄)dx̄
(2)

At low force, x̄ → 〈x〉Q, therefore the location of the
barrier on x̄ and the barrier height which capture the
kinetics are those of the true barrier (i.e. that seen on
the 2D surface), rather than the barrier on the formal 1D
PMF on x. As illustrated in Fig. 4 for protein G pulled
on x1−56, the x̄ computed from the slices through the
2D landscape at fixed Q corresponding to the unfolded,
folded and transition states are in very good accord with
the ∆x‡ from the fits of the rates to 1D theory. Land-
scape parameters on x̄ agree well with those from the fit
to 1D theory for the other systems, see ESI.
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the fit to unfolding kinetics (see Table I).

Fernandez and co-workers have highlighted a funda-
mental issue regarding 1D models which is not often con-
sidered: the 1D PMF for the pulling coordinate may have
no refolding barrier in the absence of force [33]. However,
the 1D PMF for the pulling coordinate lacks a folding
barrier not because the barrier does not exist, but rather
because it is hidden by the low energy states when the
potential is projected onto the pulling coordinate. As
we have shown, the folding barrier probed under force is
the same one present at zero force. Thus the hopping ob-
served in experiments represents true unfolding/refolding
events and not merely barrierless polymer collapse. Note
that we are not considering here any switch to an alter-
native barrier which may occur at a higher force[35, 36].

What are the implications for interpreting experi-
ments? If the transition state is easily stretched along

a given coordinate (e.g. protein G, x10−32), a small force
will shift the barrier to coincide with that in the 1D PMF
on x, and a 1D model will be a good representation over a
wide range of forces. In contrast, “stiff” transition states
(e.g. protein G, x1−56) will be hidden in the 1D PMF at
low forces; nonetheless, fits of 1D theory to the kinetics
at these forces yield the displacement and height of the
true barrier – that captured by a good folding coordinate.
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