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Abstract 

  “Rainbow trapping” has been proposed as a scheme for localized storage of broadband 

electromagnetic radiation in metamaterials and plasmonic heterostructures. Here, we articulate the 

dispersion and power flow characteristics of rainbow trapping structures, and show that tapered 

waveguide structures composed of dielectric core and metal cladding are best suited for light trapping.  

A metal/insulator/metal taper acts as a cascade of optical cavities with different resonant frequencies, 

exhibiting a large quality factor and small effective volume comparable to conventional plasmonic 

resonators.  

Body 

Slow electromagnetic waves, first studied in systems with atomic coherence at low temperature 

[1], have been investigated in recent years at room temperature via light dispersion in solid state media 

such as photonic crystals [2, 3]. However most of these systems operate only at specific resonant 

frequencies, and so broadband light trapping remains a great challenge. Tsakmakidis et al. first proposed   

“rainbow trapping” in which a wide wavelength range of electromagnetic fields can be trapped in 

tapered waveguide structures composed of negative index core and dielectric cladding (insulator-

negative index-insulator, or INI) which exhibits a negative Goos-Hänchen effect [4]. Recently, 

researchers have determined that such trapping mechanism is also applicable for transverse magnetic 



(TM) waves in insulator-metal-insulator (IMI) and metal-insulator-metal (MIM) waveguide tapers under 

certain material property conditions [5, 6]. However, to  date the question of  how much light a rainbow 

trapping structure can actually store and how the light escapes from it has not been addressed.    

In this work, we study fundamental mode conversion and loss mechanisms of linearly-tapered 

INI, IMI and MIM rainbow trapping structures and show that MIM rainbow trapping structures are 

superior to the others in terms of trapping performance. Assuming a Drude dispersion relation for the 

cladding metal, we specify the frequency range and the structural dimensions needed to achieve rainbow 

trapping and calculate the quality factor Q  and the effective mode area effA as quantitative measures of 

light trapping and localization. We perform a transfer matrix analysis [7] to examine the behavior of the 

guided modes in the structure, and confirm the results with full-wave finite difference time domain 

(FDTD) and finite element method (FEM) simulations.  The paper is organized as follows: Figure 1 

illustrates the mode conversion properties of IMI, INI  and MIM tapers.  We then compare the energy 

density distributions and modal amplitudes achievable for IMI 0TM  modes and MIM 2TM  modes, as 

indicated in Fig. 2.  For MIM tapers, we then investigate the critical taper thickness for mode conversion 

and the quality factor achievable for the quasi-bound mode as a function of frequency.  Finally we 

explore the properties of rainbow tapers as a function of taper angle, as illustrated by Fig. 4.  

 The dispersion relations of eigenmodes in rainbow trapping systems are exotic. Figure 1(d), (e) 

and (f) respectively show the effective indices effn  of IMI 0TM  modes and 2TM  modes in INI and 

MIM tapers as a function of core thickness α . For all three cases, the modes consist of two branches; 

the energy velocity, /E zv S dx udx= ∫ ∫ , where u  and S  are the time averaged energy density [8] and 

Poynting vector, and the phase velocity are parallel for one branch ( f ) and antiparallel for the other 

( b ), as seen in Fig. 1(g)-(i).  Since each mode can propagate along either the z+  or z−  direction, there 



exist a total of four orthogonal eigenmodes f + , f − , b +  and b − . The letters f  and b  identify 

the branch and the signs +  and −  indicate the direction of energy propagation. If the system is adiabatic 

enough to neglect the coupling between these modes and higher order modes, it is possible to describe 

the system as a linear superposition of these four basis modes.  The f  and b  are degenerate at a 

certain core thickness, dα , and the dispersion relations splits as α  deviates from dα . It is worth noting 

that the direction of power flow through the cladding is opposite to the flow through the core and their 

magnitudes become equal at dα α=  which results in zero energy velocity. The conditions for having 

degeneracy points are specified in Table 1[5, 6].  

Many simulation results have shown that it is impossible to trap light to a complete standstill 

even under the assumption of lossless materials [5, 9, 10]. This results from the coupling between the 

eigenmodes due to the fundamental nonadiabaticity near dα α= . More specifically, the slow core 

thickness variation condition [11], 0/ /d dz k nα α πΔ , where 0k  is the wavenumber in the free space 

and nΔ  is the effective index difference between eigenmodes, can never be fulfilled throughout the 

entire structure because 0nΔ =  at the degeneracy point. In fact, the degeneracy point connects f ±  to 

b ∓ . Mechanisms for power flow into and out of rainbow trapping structures are schematically 

described in Fig. 1(a)-(c). An incident IMI 0TM  f +  is converted to the other branch b −  at dα α=

and escapes the structure. In an INI structure, an incident photonic b +  is converted to f −  at dα α=

and couples into a backward propagating radiative mode at rα α= , where effn  coincides with the index 

of the cladding. An incident MIM photonic f +  undergoes similar mode conversion at the degeneracy 

point but the converted b −  is reflected to b +  at the mode cutoff cα α= , and converted back to 

f − , which finally escapes the structure. The reflection at cα α= , where the energy velocity also 



vanishes, makes electromagnetic waves reside longer in the taper segment between the degeneracy point 

and the  mode cutoff.  

One can intuitively sketch out the mode conversion mechanism in an analogous ray optic picture. 

A light ray incident upon a core/cladding interface at an angle of incidence 0Θ  undergoes total internal 

reflection with negative Goos-Hänchen shift, propagates in the core, and strikes the other interface with 

angle 0 θΘ − , where θ  is the taper angle. Since the successive angle of incidence 0N NθΘ = Θ −  

decreases as the number of bounces N  increases, the lateral propagation of the ray between two 

consecutive Goos-Hänchen shifted internal reflections also decreases, crosses zero, and becomes 

negative which corresponds to our mode conversion description at dα α= . For INI structures, the light 

ray escapes the structure in the form of radiation once NΘ  reaches the angle of escape rΘ  determined 

by Snell’s law (Fig. 1(b)). Therefore a ray can bounce M  times, where M  is the largest integer 

satisfying M rΘ > Θ  (i.e. 0~ ( ) /rM θΘ − Θ ). On the other hand, in MIM structures, the light ray is 

always totally reflected at the interface. Therefore NΘ  can be further reduced and cross zero at the mode 

cutoff ( cα α= ) (Fig. 1(c)). From there, the ray travels back in the z+  direction again and then repeats 

the same process that we described previously but in the reverse manner. The number of internal 

reflections is thus 0~ 2 /M θΘ , which is greater than that of the INI case. 

We perform a transfer matrix analysis to quantitatively understand the behavior of the modes in 

the IMI and MIM rainbow trapping structure by computing the amplitude of the eigenmodes. The mode 

amplitudes are normalized such that 2 ( ) / 2za dx= ×∫ E H , where E and H  are electric and magnetic 

fields of the corresponding mode. Note that, for modes having real propagation constants, 2a  is simply 

the time-averaged power flow.  Fig. 2(c) shows the mode amplitudes of IMI 0TM  modes in the steady 



state. Corresponding to our previous description, fa + and ba −  are of similar magnitude whereas fa −  and 

ba +  are very small, which indicates mode conversion from f +  to b − , with other modes suppressed. 

On the other hand, for MIM 2TM  mode trapping, ~f fa a+ − where cα α>  and b +  and b −  are 

excited only in the taper section ( , )d cα α α∈  and decay as they become evanescent (Fig. 2(d)). Due to 

the simultaneous excitation of f + , f − , b + and b − , an MIM structure can store large amounts 

of energy which makes them the best candidates for trapping light. Although an IMI structure can 

perform as a compact mode converter, its light trapping capability is inferior to the MIM trapping 

structure because it does not exhibit mode cutoff (Fig. 2(a) and (b)).  Due to the inevitable radiation loss, 

in addition to the difficulties in fabrication, INI rainbow trapping seems less attractive compared to the 

other approaches. Therefore, we focus our attention on MIM rainbow trapping in the rest of the 

discussion.  

Although rainbow trapping structures are open systems, they can be considered as a series of 

optical cavities having different resonant frequencies since they can localize broadband light in tapered 

sections of different width depending on frequency. Assuming a dispersionless dielectric core and a 

Drude metal cladding of 2 2
II ( ) 1 / ( )p iε ω ω ω ω= − + Γ  where pω  and Γ  are the plasma frequency and the 

damping constant respectively, 2TM modes at frequency ( )1/2
I/ (0.2430 1) ,1pω ω ε −∈ +  can be trapped in 

the structure (Table 1). We plot dα , cα  and dn  as functions of ω  in Fig. 3(b). As a measure of trapping 

performance, we calculate the quality factor Q  from electric and magnetic field distribution in the 

steady state. Q  is defined by /U Pω  where P is the power dissipated and U  is the energy stored in the 

rainbow trapping structure ( 0z > ) having the entrance thickness 0α (see inset of Fig. 3(a)).  Here, 0α  is 

chosen to be max{ ( )}cα ω  to ensure the structure to be functional for the entire target frequency range. 



Recognizing that the input power is equal to the dissipated power in steady state, and that the only 

incoming guided mode at the entrance ( 0z = ) is f + , P  is equal to the incoming power carried by 

f + . Since the wave propagates deeper along the taper, Q  increases as ω increases for a fixed taper 

angle 2θ =  (Fig. 3(d)). It is worth noting that Q  is directly proportional to the light trapping time 

/Qτ ω= . For instance, for 2θ =  and / 0.6pω ω = , τ  is calculated to be around 33 periods which is 

quite a long time since the distance between the entrance and the degeneracy point is only about 1.5 

effective wavelengths. We confirm that τ  corresponds to the actual signal trapping time by measuring 

the time it takes by a pulse to escape a rainbow trapping structure by FDTD simulations. Interestingly, 

the signal trapping time does not vary significantly from the value of the lossless case but only causes 

the outgoing signal to attenuate as Γbecomes larger. 

When material loss is present ( 0Γ ≠ ), the degeneracy between f  and b  is removed and Ev  

thus has finite value everywhere (Fig. 1(f)). However, the overall power flow and optical dispersion 

characteristics – Ev  drops down significantly and that the effective indices of f  and b  get very close 

to each other around dα α= – are preserved.  Thus the previously described light trapping mechanism is 

still valid except at very high loss. For a fixed frequency, Q  is found to be almost inversely proportional 

to the taper angle. As 0θ → , Q  becomes limited by ohmic loss inside the metal alone, asymptotically 

approaching eff 0/ 2 Im{ ( )}f
Ec v n α α+ =  (Fig. 4(b)). 

We also calculate the effective area effA  for our two-dimensional rainbow trapping structure as a 

measure of light localization, eff / max{ ( , )}A U u x z= , where ( , )x z  reside in the dielectric core where an 

object may be placed to interact with the field. By conservatively assuming a diffraction-limited height 

0 I/ 2yL nλ= , the effective volume can be approximated as eff eff 0 I~ / 2V A nλ . Fig. 4(d) displays eff/Q V



of 2TM  modes as a function of inverse angle 1θ − . When 0Γ = , eff/Q V  monotonically increases since 

adiabatic condition holds up to α closer to dα  as θ gets smaller. In the presence of material loss, the 

effect of rainbow trapping and propagation losses compete. The eff/Q V is dominated by propagation loss 

for very small taper angle whereas the rainbow trapping effect dominates it for relatively large θ , 

because propagation loss exponentially increases as a function of propagation distance. Therefore 

eff/Q V  has a maximum where both effects are balanced. For greater values of Γ , the optimal θ

increases to compensate higher propagation loss. 

We note that 1TM modes at ( )1/2 1/2
I I/ (1.3510 1) , ( 1)pω ω ε ε− −∈ + +

 
can also be trapped in the 

MIM taper structures. The parameters dα and rα  of 1TM modes have similar order of magnitude to 

those 2TM  modes, implying that both type of modes can be trapped in a single structure (Fig. 3(a)).  

However, unlike 2TM  or higher order photonic modes, 1TM modes are mostly anti-symmetric 

superpositions of surface plasmon polariton modes. Their field intensity is greatest at the metal/dielectric 

interfaces and exponentially decays as a function of distance from the interface, making them slow 

compared to the photonic modes and very sensitive to changes at the vicinity of the surface. Due to the 

small energy velocity, Q  of 1TM  modes tends to be much higher than that of photonic modes and even 

diverges when ω  approaches to surface plasmon resonance frequency if the metals are lossless (Fig. 

3(c)). Moreover, since the energy of 1TM  modes is highly confined at the interfaces, they can have very 

small effA  well below the diffraction limit (Fig. 4(c)). However, because of the significant energy 

penetration into the metal, 1TM modes are much sensitive to the material loss than 2TM  modes, making 

it difficult for them to exhibit a rainbow trapping effect for the realistic damping constant / ~ 0.01pωΓ  

[12].They also undergo non-negligible reflection due to the tapering. This adds distinctive Fabry-Perot 



type oscillations as a function of the taper length, as illustrated in Fig. 4(a) and (c).  The 1TM  modes 

might not be suitable for signal processing since the shape of a signal can be significantly distorted by 

this reflection.  

In order to exhibit rainbow trapping effect for a wide range of frequencies, dielectric core 

materials should have sufficiently high index and the metal cladding should have low ohmic loss and 

simultaneously satisfy the conditions specified in Table 1. In the optical frequency range, MIM rainbow 

tapers with Ag [12] as the metallic layer and GaP [13] as the dielectric are able to trap TM  modes for 

wavelengths ranging from 540 to 590 nm at α  of 22-48 nm. For a Ag/GaP/Ag taper of 0 50α = nm and 

5θ = , we obtain Q ~30-60 and 2
eff 0 I( / )A nλ − ~0.01-0.1 throughout the target wavelength range (see 

Supplementary Information). One could also trap infrared light by utilizing polar dispersive materials 

that support phonon-polariton modes as negative permittivity claddings. For instance, SiC/Si/SiC 

heterostructures are able to localize 2TM  modes in infrared regime near the SiC phonon polariton 

resonance (~10.5 μm) where the permittivity of SiC varies from positive to negative with very small 

damping [14].   

In summary, rainbow trapping structures composed of insulating core and metal claddings offer 

better trapping performance compared to INI or IMI structures. We have also shown that MIM rainbow 

trapping structures can exhibit large broadband Q  and eff/Q V  comparable to those of existing 

plasmonic cavities [15, 16]. It should also be possible to reduce the propagation loss by configuring the 

taper profile of rainbow trapping structures to be other than linear.  Rainbow trapping structures may 

also find application as materials that surpass the classical light trapping limit [17] and which enhance 

the efficiency of solar cells by trapping different frequency bands of the solar spectrum into 

semiconductors of different band gaps arrayed along the taper in order to maximize the solar absorption.  



Further investigations may also lead to applications in optical signal processing by utilizing the electro-

optic effect. 
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Tables and Figures  

INI, NIN MIM  IMI 

1
0TM : max{1, }ε μσ σ −>  

1
1TM :1 ε μσ σ −< <  

2TM : 1m ε μσ σ≥ <   

1TM :1 1.3510εσ< <  

( )1/2 1/2
2TM : atan

2m
m

ε ε
πσ σ− −

≥ + >  

0TM : 

1εσ >  

Table 1. The conditions for rainbow trapping. II I/εσ ε ε=  and II I/μσ μ μ=  where the subscripts I 

and II denote the core and the cladding respectively. For INI TE modes, replace ε μσ σ↔ .  

 

 

 



 

Figure 1. Schematic descriptions of (a)-(c) mode conversion mechanism, (d)-(f) effn  and (g)-(i) Ev  of 
IMI( I 8.5ε = − , II 10ε = ) 0TM , INI( I I 3ε μ= = − , II II 1ε μ= = ) 2TM , and MIM( I 10ε = , II 1ε = − ) 2TM  
modes versus 0kα . In (d)-(f), real part and imaginary part of effn  are represented as solid and dashed 
curves respectively. Lossless and lossy( Im{ }/ Re{ } 0.03ε ε =  for metal and 
Im{ }/ Re{ } Im{ }/ Re{ } 0.03ε ε μ μ= = for negative index metamaterial) cases are plotted as blue and red 
curves respectively in (d)-(i). Dotted vertical lines indicate degeneracy point dα , radiation point rα , and 
the mode cutoff cα .  



 

Figure 2. Energy density distribution ( , )u x z  of (a) IMI ( I 8.5ε = − , II 10 0.01iε = + ) 0TM  and (b) MIM 
( I 10ε = , II 1 0.001iε = − + ) 2TM  modes. Boundaries between core and claddings are indicated by white 
solid lines. (c),(d) Mode amplitudes of f +  (red), f −  (blue), b +  (orange) and b −  (purple) 
modes as functions of core thickness in the (c) IMI and (d) MIM structures. Dotted vertical lines indicate 

dα  and cα . 

 

 

 

 

 



 

Figure 3. dα (blue solid), c dα α− (blue dashed, 100 times magnified in (b)) and dn , the effective phase 
index of the mode at dα α=  (red solid) of MIM ( I 10ε = , 2θ = ) (a) 1TM  and (b) 2TM modes versus 

/ pω ω . dα and cα  are normalized by 1 /p pk c ω− = . The inset in (a) shows the schematic of a MIM 
rainbow trapping structure. Q  versus / pω ω  of (c) 1TM  modes for / pωΓ = {0 (red circles), 0.001(blue 
squares), 0.01(orange triangles)}  and (d) 2TM  modes for / pωΓ = {0 (red circles), 0.01(orange 
triangles), 0.1(purple diamonds)}.   

 

 

 



 

Figure 4. Q  and eff/Q V  versus 1θ −  of (a), (c) MIM ( I 10ε = ) 1TM  modes at / 0.277pω ω =  for 
/ pωΓ = {0 (red circles), 0.001(blue squares), 0.01(orange triangles)} and (b),(d) 2TM  modes at 
/ 0.6pω ω =  for / pωΓ = {0 (red circles), 0.01(orange triangles), 0.1(purple diamonds)}. The insets in (a) 

and (c) respectively plot Q  and eff/Q V  for 0Γ =  in full range. eff/Q V  is normalized by ( ) 3
0 I/ nλ − . 


