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We present a scheme for achieving coherent spin squeezing of nuclear spin states in semiconduc-
tor quantum dots. The nuclear-polarization-dependence of the electron spin resonance generates
a unitary evolution that drives nuclear spins into a collective entangled state. The polarization
dependence of the resonance generates an area-preserving, “twisting” dynamics that squeezes and
stretches the nuclear spin Wigner distribution without the need for nuclear spin flips. Our estimates
of squeezing times indicate that the entanglement threshold can be reached in current experiments.

Entanglement generation and detection are two of the
most sought-after goals in the field of quantum control.
Besides offering a means to probe some of the most pe-
culiar and fundamental aspects of quantum mechanics,
entanglement in many-body systems can be used as a
tool to reduce fluctuations below the standard quan-
tum limit[1]. Recently, squeezing of the collective spin
state of many atoms[2] was achieved using atom-light
or atom-atom interactions[3–6], allowing unprecedented
precision of measurements in atomic ensembles[7]. Simi-
larly, future progress in spin-based information process-
ing hinges on our ability to find ways of precisely con-
trolling the dynamics of nuclear spins in nanoscale solid-
state devices[8, 9]. In particular, electron spin coher-
ence times[10, 11] can be improved by driving the nuclear
spin bath into reduced-entropy “narrowed” states[12–17],
as seen in experiments[18]. Furthermore, with quantum
control, a nuclear spin bath can be turned into a re-
source, serving as a long-lived quantum memory[19–21],
or a medium for high-precision magnetic field sensing[22].

Here we describe a coherent spin squeezing mechanism
for gate-defined quantum dots[23], see Fig. 1a. With suit-
able modification, our approach can also be applied to
other systems which can be approximately described by
a central-spin model. We consider a single electron in a
quantum dot, in contact with a large group of nuclear
spins, {În}. The electron and nuclear spins are coupled

by the hyperfine interaction HHF =
∑

n AnŜ · În, where
Ŝ is the electron spin, and each coupling constant An is
proportional to the local electron density at the position
of nucleus n. The electron spin is driven by an applied
RF field with frequency close to the electron spin res-
onance (ESR) in the presence of an externally applied
magnetic field. Because the electron spin evolves rapidly
on the timescale of nuclear spin dynamics, the nuclear
spins are subjected to an effective hyperfine field (the
“Knight field”) produced by the time-averaged electron
spin polarization. Nuclear spin squeezing results from
the dependence of the electronic hyperfine field on the
detuning from the ESR condition, which in turn depends
on the nuclear polarization, see Fig. 1b.

In a system comprised of many spins {În}, such as a
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FIG. 1: Nuclear spin squeezing in a quantum dot. a) An
electron in a quantum dot, with the electron spin S coupled
to a large group of nuclear spins {In}. Electron spin resonance
is excited by microwave radiation applied in the presence of an
external magnetic field. b) Flowchart describing the squeezing
mechanism. c) Schematic depiction of twisting dynamics on
the Bloch sphere, shown in a rotating frame where the mean
polarization is stationary. We focus on dynamics between the
initial time t0 and an intermediate time t1, during which the
phase space (Wigner) distribution is squeezed within a small,
flat region of the Bloch sphere, see Eqs.(7) and (8). At longer
times, indicated by t2, the distribution extends around the
Bloch sphere.

quantum dot or an atomic ensemble, the collective to-
tal spin Î =

∑
n În is a quantum mechanical angular-

momentum variable. Because different vector compo-
nents of Î do not commute, they are subject to the
Heisenberg uncertainty relations

∆Iy∆Iz ≥ h̄

2
|〈Îx〉|, (1)

and its cyclic permutations[2, 24] (without loss of general-
ity, we focus on the spin 1/2 case). Squeezing is achieved
by reducing fluctuations in one spin component below

the “standard quantum limit,” ∆Iα =
√

1

2
h̄|〈Îx〉|. As

we discuss below, depending on the application, a vari-
ety of criteria can be used for identifying “useful” levels
of squeezing (see Refs.[2, 7, 24]).
Typically, the inequality in Eq.(1) is far from saturated
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in quantum dots under ambient conditions. In equilib-
rium, the typical nuclear polarization and the uncertain-
ties ∆Iα are all of order

√
N (see e.g. Ref.[25]), where

N ∼ 106 is the number of nuclear spins in the quan-
tum dot. Here we consider an initial state prepared by
polarizing nuclear spins to a fraction p of the maximal
polarization, and then rotating this polarization into the
equatorial plane of the Bloch sphere such that the mean
spin points along x, 〈Îx〉 = pNh̄/2. Experimentally,
nuclear spin polarizations of up to 40% have been re-
ported for electrically-driven systems[26], and up to 60%
in optically-pumped systems[27].
To quantify the degree of squeezing for arbitrary po-

larization, Wineland et al.[7] introduced the parameter
ξ =

√
N∆Iz/|〈Îx〉| ≈ 2∆Iz/(ph̄

√
N), which character-

izes the angular resolution of the squeezed state relative
to that of an uncorrelated product state. Different phys-
ical effects are described by three different conditions:

1) ξ < 1/p, 2) ξ < 1/
√
p, 3) ξ < 1. (2)

Condition 1 is sufficient to achieve ESR narrowing in a
quantum dot in a large magnetic field, where the elec-
tron Zeeman energy is sensitive to the Overhauser shift,
proportional to ∆Iz. Condition 2 indicates that the stan-
dard quantum limit has been surpassed. Finally, the
most stringent condition (ξ < 1) is sufficient to im-
ply entanglement of the constituent spin-1/2 particles
(c.f. Ref. [24]) and enhanced resolution for atomic clocks.
Below we demonstrate that with realistic values of p,

all three conditions (2) can be met. Compared with the
ideal case p = 1, we find that incomplete initial polariza-
tion, p < 1, and fluctuations in the prepared value of p
should not hamper efforts to obtain useful squeezing (all
three conditions are close for p of order 1).
In Ref.[28], Fernholz et al. achieved squeezing of the

internal spin variables of individual composite particles,
Cesium atoms with total spin F = 4. In contrast, here
we describe a mechanism for squeezing the collective spin
state of a large ensemble of spatially-distributed spins
which can in principle be selectively addressed.
To describe the coupled electron-nuclear spin dynam-

ics, we model the system with the microscopic Hamilto-
nian (below we set h̄ = 1)

H = ωZ Ŝ
z+ω0Î

z+AÎzŜz+
A

2
(Î+Ŝ−+Î−Ŝ+)+Hel, (3)

where ωZ is the electron Zeeman energy in the magnetic
field, ω0 is the nuclear Larmor frequency, and Hel de-
scribes the driving of the electron spin and its coupling
to an environment, which leads to fast dephasing and re-
laxation. For simplicity, here we consider a single species
of nuclear spin, and take all hyperfine coupling constants
to be equal, An = A. The latter condition amounts to
the assumption that electron density is approximately
constant inside the dot, and zero outside. In this case,

the electron spin couples directly to the total nuclear spin
Î =

∑
n În, with the square of the total nuclear spin, Î2,

conserved by the dynamics. The effects of non-uniform
couplings will be discussed at the end.
We begin by writing the Heisenberg equation of motion

for the total nuclear spin operator Î, dÎ/dt = i[Î, H ]:

dÎ

dt
= b× Î, b = ω0z+AŜ. (4)

In the motional-narrowing regime where electron dynam-
ics are fast compared to the nuclear spin evolution, we
use Eq. (3) to adiabatically eliminate the electron spin
from the right hand side of Eq. (4). Due to the large
mismatch between the electron and nuclear Zeeman en-
ergies, ωZ/ω0 ≫ 1, averaging over fast oscillations of

the electron allows us to replace Ŝ by an operator-valued
semiclassical mean polarization Sz(Îz) which depends on
the nuclear polarization Îz through the Overhauser shift
of the ESR frequency, c.f. Ref.[29]:

Sz =
1

2

(δω −AÎz)2 + γ2

(δω −AÎz)2 + γ̃2
, γ̃2 = γ2 +

γ

Γ1

Ω2, (5)

where δω is the detuning between the driving frequency
and ωZ , Ω is the driving strength, γ ≡ 1/T2 is the elec-
tron spin dephasing rate, Γ1 is the electron spin relax-
ation rate. Linearizing Eq. (5) in AÎz around the opti-
mal detuning δω∗ = γ̃/

√
3 where Sz is most sensitive

to nuclear-polarization-dependent frequency shifts, see
Fig.2, and substituting into Eq. (4), we obtain an ef-
fective Hamiltonian for the collective nuclear spin:

H ≈ ω0Î
z +

1

2
λ(Îz)2, λ = A

∂Sz

∂Îz

∣∣∣∣
Îz

=0
δω=δω∗

, (6)

with Î2 = I(I+1), I ≤ N/2, conserved by the dynamics.
Note that here we have absorbed a constant shift into
the nuclear Larmor frequency ω0. The Hamiltonian in
Eq.(6) is of the canonical squeezing Hamiltonian form[2].
It is interesting to note that while the end results, Eqs.(5)
and (6), have a similar form to those obtained for spin
squeezing in atomic systems[4–6], the underlying micro-
scopic mechanisms are quite different.
To illustrate the squeezing induced by the Hamiltonian

in Eq. (6), and to facillitate further investigation of the
effects of classical fluctuations in the initial state, as well
as the effect of time-dependent electron spin fluctuations
around the steady state Sz, we now analyze the evolu-
tion of the nuclear spin Wigner distribution. For a large
initial polarization p, where I = pN/2, and for short to
intermediate times t0 <∼ t <∼ t1 (see Fig.1c), the “uncer-
tainty region” associated with the nuclear state is small
on the scale of the total spin and we can consider evo-
lution in a locally flat patch of the Bloch sphere. Here
the operators Îy and Îz approximately obey canonical
commutation relations, and the initial nuclear spin state
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FIG. 2: a) Time-averaged electron spin polarization Sz,
Eq.(5), and squeezing strength λ, Eq.(6), versus RF detun-
ing δω from the ESR frequency. The average electron spin
polarization depends on Îz through the dependence of the
detuning on the Overhauser shift, as indicated by the shaded
region. b) Contour plot representation of the Wigner distri-
bution of a large collective spin on a locally-flat patch of the
Bloch sphere, in the rotating frame where ω0 = 0. The mean
spin points along x. Before squeezing, theWigner distribution
is isotropic (blue). After squeezing, the Wigner distribution,
Eq.(7), is squeezed along an axis z′, and stretched along an
orthogonal axis y′ (red).

(polarized along x) is described by an isotropic 2D Gaus-
sian Wigner distribution with width set by the initial
transverse fluctuations, ∆I ≡ ∆Iy,z0 .
Semiclassically, Eq.(6) induces precession of the total

spin vector about the z axis with a polarization-dependent
Larmor frequency η = ∂H/∂Iz = ω0 +λIz . Correspond-
ingly, the Gaussian Wigner distribution evolves as

ft(I
y, Iz) = A exp

(
− (Iz)2 + (Iy + IλtIz)2

2∆I2

)
, (7)

where without loss of generality we set ω0 = 0. The ini-
tial (isotropic) and evolved (squeezed) distributions are
shown in Fig.2b.
The quadratic form in the exponential in Eq.(7) is diag-

onalized in a suitably chosen orthonormal basis y′, z′ [35].
As shown in Fig.2b, stretching in one direction (y′) is
accompanied by squeezing in the perpendicular direction
(z′), such that the phase space volume of the Wigner dis-
tribution is exactly preserved if fluctuations of the elec-
tron spin are ignored. For times t >∼ tS = (|λ|I)−1, the

uncertainty ∆̃I of the squeezed component decreases as

∆̃I(t) ≈ ∆I
tS
t
, tS ≈ 16Γ1γ̃

3

3
√
3IA2γΩ2

. (8)

Squeezing proceeds until long times when the phase space
distribution begins to extend around the Bloch sphere,
see Fig.1c. The curvature of the Bloch sphere imposes a
limit on the maximum achievable squeezing[2].
For an order-of-magnitude estimate of the squeez-

ing time, we set Ω = Γ1 = 1

5
γ. This choice selects

the regime of moderately strong electron spin dephas-
ing where the resonance is broader than the minimum
value γ = 1

2
Γ1. In this practically relevant regime,

the motional-averaging approximation can be safely ap-
plied. Taking the ‘intrinsic’ width of the resonance to

be twice larger than the typical Overhauser field fluctu-
ations, γ ≈ A

√
N , we obtain

tS,min ≈ 20

√
N

IA
. (9)

Using a typical value of the hyperfine coupling for GaAs,
A ≈ 0.1µs−1, we obtain tS,min ≈ 200µs(

√
N/I). The es-

timate for tS,min can be improved slightly by optimizing
the expression for tS in Eq. (8) with respect to driving
power Ω. The fast relaxation rate Γ1 ∼ A

√
N can be

achieved by working in a regime of efficient electron spin
exchange with the reservoirs in the leads. We see that
the squeezing time is inversely proportional to the ini-
tial length of the nuclear spin vector, i.e. the degree of
nuclear polarization before squeezing.
To derive the squeezing time tS in Eq.(9), a coher-

ent nuclear spin state with ∆I =
√
I/2 was used. As

discussed above, however, when classical uncertainty in
the nuclear spin state is included, the initial width of
the Wigner distribution is given by ∆I =

√
N/2. Given

that the width ∆̃I of the squeezed component decays
as 1/t, see Eq.(8), the effect of the classical transverse
fluctuations is simply to increase the time required to
reach a desired level of fluctuations by an order-one fac-
tor

√
N/2I =

√
1/p.

Besides fluctuations in the transverse components of
the initial polarization, the DNP process used to prepare
the initial nuclear spin state will also leave behind un-
certainty in the length I of the net spin (typically with
a scale much smaller than I itself). However, because
the rate of angular precession depends only on the z-
component of the total spin, Eq.(7), sections of the phase
space distribution with constant Iz but varying Bloch
sphere radii will rigidly precess. Therefore fluctuations in
the initial polarization I do not pose a significant threat
to squeezing.
In addition to uncertainty in the initial nuclear spin

state, we must also consider the effect of time-dependent
fluctuations of the electron spin about its mean-field
value Sz, Eq.(5). The mean-field approximation to
Eq.(4) applies in the motion-averaged limit when the
electron spin evolves quickly on the time scale of the
nuclear spin dynamics, and hence the contribution of
time-dependent electron spin fluctuations is small. The
residual effect of such fluctuations is to add a diffusive
component to the nuclear-polarization-dependent pre-
cession induced by the time-averaged electron spin. It
can be shown that the diffusivity κ associated with this
phase diffusion approximately goes as κ ∼ 1/Γ, where
Γ ∼ W,Γ1 is the characteristic rate of electron spin
dynamics[35]. Thus phase diffusion is indeed suppressed
by motional-averaging. At long times, the competition
between coherent twisting dynamics, which squeezes fluc-
tuations as 1/t, and phase diffusion, which tends to
increase fluctuations as t1/2, slows down squeezing to
∆̃I ∼ t−1/2, but does not prevent it.
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The results above are based on a semiclassical mean-
field treatment of Eq.(4) supplemented by electron-spin-
fluctuation-driven phase diffusion. This intuitive ap-
proach is quantitatively supported by a lengthier calcu-
lation based on the full density matrix of the combined
electron-nuclear system, to be presented elsewhere. The
more powerful density-matrix approach can also be used
to study squeezing in the coherent driving regime of elec-
tron spin dynamics where large correlations can build up
between the electron and nuclear spins.
Is the approximation of uniform hyperfine coupling jus-

tified? The hyperfine interaction in a quantum dot is
strong near the center, where electron density is high, and
weak at the edges. Notably, the atomic systems[4] display
a similar level of spatial inhomogeneity, since there is a
full modulation of coupling between zero and maximum
coupling in a standing wave of light. The observation of
robust squeezing in atomic clouds of size comparable to
the wavelength of light indicates that spatial variation of
the coupling does not compromise the effect.

For p ≈ 20%, squeezing sets in after tS ∼ 2 µs, and
fluctuations are suppressed by a factor of 10 within ap-
proximately 20 µs (neglecting phase diffusion). Due to
classical fluctuations in the initial state, the first

√
1/p-

fold (1/p-fold) squeezing goes toward reaching the stan-
dard quantum limit (entanglement threshold). Taking
into account phase diffusion, we arrive at timescales that
are at least 10 times shorter than typical nuclear deco-
herence times (recently measured to be ∼ 1 ms in vertical
double quantum dots[31]). It should thus be possible to
squeeze the nuclear spin state faster than it decoheres
due to dipole-dipole interactions, etc.
All elements required for achieving and demonstrat-

ing squeezing, i.e. dynamical nuclear polarization[26, 27],
controlled rotations using NMR pulses[30, 31], and co-
herent control of single electron spins[23, 32, 33], have
been realized. In particular, we note that in Ref. [23]
electron spin resonance was achieved by excitation using
microwave magnetic fields, with driving amplitudes com-
parable to the random nuclear field acting on the electron
spin, AδI. The corresponding transition rates are of the
order of 10 MHz. In order to reach the motional averag-
ing regime, the electron spin relaxation rate, Γ1, must be
comparable to the transition rate W , which can be eas-
ily accomplished by allowing cotunneling to the electron
reservoirs next to the dot. The degree of squeezing ξ, see
Eq. (2), can be ascertained by the combination of two
separate measurements on the final state: (1) an NMR
pulse[30, 31] which rotates the minimum uncertainty axis
(z′) into the z-axis followed by an electron spin dephasing
measurement[34] of ∆Iz and (2) an NMR pulse which ro-
tates the net polarization 〈Ix〉 into to the z-axis, followed
by a measurement of the average nuclear field along z.

In summary, squeezed and entangled states of nuclear
spins in quantum dots driven near the ESR are generated
by unitary evolution which does not involve incoherent

spin flips. Our estimates of the timescales for various ef-
fects that compete with squeezing indicate that squeezing
is feasible and can be realized with current capabilities.
Such schemes may potentially open the door to unprece-
dented levels of quantum control over collective degrees
of freedom in nanoscale systems with mesoscopic num-
bers (N ∼ 104 to 106) of nuclear spins.
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