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Dynamical mean field methods are used to calculate the phase diagram, many-body density of
states, relative orbital occupancy and Fermi surface shape for a realistic model of LaNiO3-based
superlattices. The model is derived from density functional band calculations and includes oxygen
orbitals. The combination of the on-site Hunds interaction and charge-transfer between the transi-
tion metal and the oxygen orbitals is found to reduce the orbital polarization far below the levels
predicted either by band structure calculations or by many-body analyses of Hubbard-type models
which do not explicitly include the oxygen orbitals. The findings indicate that heterostructuring
is unlikely to produce one band model physics and demonstrate the fundamental inadequacy of
modeling the physics of late transition metal oxides with Hubbard-like models.

PACS numbers: 73.21.Cd, 73.20.-r, 71.10.-w

The electronic properties of transition metal oxides are
of central importance to condensed matter physics and
materials science, both for their fundamental scientific
interest1,2 and for their potential for novel applications.3

Of particular current interest are the new possibili-
ties enabled by advances in atomic-scale layer-by-layer
growth of combinations of complex oxide materials4,5.
Experiments report remarkable and unexpected prop-
erties including interface superconductivity,6 orbital
reconstruction,7 high Curie-temperature magnetism8

and metal-insulator transitions.9,10

These developments suggest that it may become pos-
sible to design materials with desired ’correlated elec-
tron’ properties such as high-temperature superconduc-
tivity. Rational materials design requires knowledge of
the structure-property relation between atomic arrange-
ment and electronic density of states. In systems such as
conventional semiconductors where the electronic struc-
ture is well described by density functional band theory
this issue is well understood, so that e.g. band-gap engi-
neering by choice of superlattice or size of quantum dot
is now routine.11 However, band theory provides an in-
complete description of the relevant electronic states in
materials with strong electronic correlations, and as a re-
sult the understanding of structure-property relations in
transition metal oxides is much less well developed.

The important states transition metal oxides are the
transition metal d-orbitals. In the CuO2-based high-
Tc cuprates the nominal electronic configuration of the
Cu is d9 (one hole in the d-shell) and the crystal struc-
ture breaks the rotational symmetry to the point that
the only relevant Cu orbital is the dx2−y2 . The result-
ing quasi-two-dimensional x2 − y2-dominated electronic
structure is believed to be crucial to the high transi-
tion temperature.12,13 In the related material LaNiO3

the nominal configuration is Ni d7 and the relevant or-
bitals are dx2−y2 and d3z2−r2 , which transform as a dou-
blet under crystal symmetry operations. A recent pa-
per suggested that in a superlattice composed of alter-

nating layers of LaNiO3 and a related but insulating
material such as LaAlO3 the d3z2−r2 orbital would be
pushed so far away in energy that the Fermi surface would
only have one sheet possibly leading to high tempera-
ture superconductivity.14 While there is to our knowl-
edge no experimental evidence for superconductivity in
nickelate superlattices, essential aspects of correlated-
electron behavior including metal-insulator transitions
and magnetic behavior are intimately connected to or-
bital physics,2,15 so the issue of orbital polarization in
superlattices and its relation to electronic behavior is an
essential question for the subject of ’correlated electron
materials by design’.
Density functional band theory calculations16,17 indi-

cate that an LaNiO3/LaXO3 superlattice has partial
(∼ 20 − 40%) polarization of the Ni d orbitals, with
the precise amount (and sign) of the polarization de-
pending on the specific choice of counter-ion X in the
heterostructure,17 but the known inadequacy of band
theory for charge transfer materials such as the rare earth
nickel oxides motivates an examination of the effects of
correlations. In this paper we show that strong correla-
tion effects actually decrease the polarization. The key
feature aspect of our calculation is the use of a realis-
tic Hamiltonian which is derived from the density func-
tional band calculations of Ref. 17 and in particular takes
oxygen states into account explicitly. The possibility of
charge transfer to the oxygen affects the results in an
important way. The model is of the general form

H = Hd +Hhyb +Hligand (1)

The Hamiltonian for the correlated (“d”) subspace is

Hd =
∑

j,a,σ

εdd
†
jaσdjaσ +

U

2
N̂ j

d

(

N̂ j
d − 1

)

+HJ (2)

with a = 1, 2 labelling the x2 − y2 and 3z2 − r2 d states,
N̂ j

d the total number of d electrons on site j, U the on-
site repulsion and HJ the additional ’Hunds’ interactions
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FIG. 1: Metal-insulator phase diagram of two dimensional
Ni − O superlattice calculated using single-site dynamical
mean field theory in plane of on-site interaction strength U

and charge transfer energy ∆ = εp − εd. Plotted is Uc1, the
lower limit of stability of the insulating phase

which give the multiplet structure at given d occupa-
tion. Consistent with recent downfolding studies of the
screened interaction matrix elements in transition metal
oxide compounds.18,19 we take the interaction terms to
have the standard Slater-Kanamori form,1 set J = 0.5eV
and consider a range of U .

Hhyb and Hligand describe the d− p hybridization and
the ligand (oxygen) part of the band structure. They
may be obtained by fitting a tight binding model to a
calculated band structure or, equivalently, by construct-
ing Wannier functions from states within some appro-
priately chosen energy window.20,21 The resulting tight
binding model (obtained from non-spin-polarized GGA
band calculations17) involves eg orbitals as well as oxy-
gen 2pσ orbitals with a mean oxygen energy εp, oxygen-
oxygen hoppings tpp and Ni-O hoppings tpd and is de-
scribed in detail in Ref. 17. The choiceX = In was found
to produce the largest dx2−y2 occupancy and a very weak
hybridization in the direction transverse to the superlat-
tice plane. In this paper we study the extreme case of
a two dimensional system defined using the Ni and O
parameters obtained from the LaNiO3/LaInO3 super-
lattice studied in Ref. 17 but with the hopping from the
apical O ion to the X plane set to zero.

The charge transfer energy ∆ = εp − εd plays a cru-
cial role in the theory of the metal-insulator transition in
oxides.22 ∆ is renormalized from the band theory value
by the double-counting correction20 whose value is an
important unsolved problem in materials theory. Differ-
ent prescriptions have been proposed,20,21,23 but no clear
consensus has emerged. We study a range of ∆ here,
corresponding to a range of double counting corrections.

To treat the many-body physics we use the single-
site dynamical mean field approximation24 with the
hybridization expansion impurity solver25,26 which can
treat the full rotationally invariant Hunds coupling. We
focus mainly on the metallic regions of the phase dia-

gram. Care must be taken to converge the solution (up
to 30 iterations of the dynamical mean field procedure are
required for parameters near the metal-insulator transi-
tion line) and temperatures must be chosen low enough
to reveal the quasiparticle behavior in all orbital sectors.
In the single-site dynamical mean field approximation

the metal-insulator transition is first order, character-
ized by an upper critical interaction strength Uc2 which
marks the limit of stability of the metallic phase and a
lower critical interaction strength Uc1 which marks the
limit of stability of the insulating phase. Fig. 1 presents
Uc1 of ∆. The location of the rare earth nickelates on the
phase diagram is not known. LaNiO3 is metallic in bulk
and (except for one and perhaps 2 monolayer samples)
in thin film form. Other members of the family such as
NdNiO3 have insulating ground states, suggesting that
the materials are close to a metal/charge-transfer insu-
lator phase boundary, but the origin of the insulating
phase is controversial.27–29 We therefore study a range
of parameters in the metallic state. In DMFT the insu-
lating state typically exhibits some form of orbital order,
making the interpretation less clear.
The many-body electronic structure is represented by

the local spectral function (many-body density of states)
Aa(ω) = Im

(

−i
∫

dte−iωt
〈[

ψa(j, t), ψ
†
a(j, t

′)
]〉)

(here a
labels an orbital and j a unit cell in the lattice). Panel
(a) of Fig. 2 presents the noninteracting (U = 0) case, for
which ∆ ≈ −4eV . These spectra are consistent with pre-
viously published GGA results17 (the small differences
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FIG. 2: (Color online) Analytically continued spectral func-
tion A(ω), for Ni dx2

−y2 (dotted, blue on line), d3z2−r2 (solid,
red on-line) orbitals and sum of all O orbitals (dashed, ma-
genta on line). Parameters: (a) U = 0, Nd = 2. εd = −1.22
eV, εp = −5.2 eV. (b) U = 4 eV, Nd = 1.47. εd = −3.91
eV, εp = −7.89 eV. (c) U = 6 eV, Nd = 1.98. εd = −8.95
eV, εp = −4.93 eV. (d) U = 6 eV, Nd = 1.44. εd = −5.75
eV, εp = −7.73 eV. Fermi level is zero. J = 0.5 eV and
T = 0.1 eV. Computed polarization P from Eq. [4] with
Elow = −3eV shown for each panel. The P values corre-
sponding to integration over the entire manifold (obtained
from the τ → β− limit of the imaginary time Green functions)
are P = (0.16, 0.07, 0.05, 0.08) for panels a-d respectively.
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FIG. 3: Calculated Fermi surfaces at J = 0.5 eV and ∆ =
−1.98 eV. (a) U = 0, Nd = 2.44, εd = −1.81 eV. (b) U = 4
eV, Nd = 1.65, εd = −4.65 eV. (c) U = 6 eV, Nd = 1.45,
εd = −5.78 eV. (d) U = 7 eV, Nd = 1.34, εd = −6.02 eV. For
panels (a)-(c) T = 0.05 eV; for panel (d) T = 0.025 eV,

arise from the difference between the two dimensional
model used here and the fully three dimensional model
of Ref. 17). Two energy regions are evident: a near
Fermi surface region representing the d − p antibonding
band and a lower energy region representing the bonding
combination of d and p. The p level energy is visible as
a sharp peak in this energy region. Panel (b) shows the
result of increasing the interaction strength to U = 4eV
while keeping both the total electron count and ∆ fixed.
Comparison to Fig. 1 shows that this change moves the
system close to the metal-insulator phase boundary. We
see that the splitting between the bonding and antibond-
ing regions of the spectrum increases, essentially because
the interaction increases the effective d-level energy. We
also see that the differences between the spectra of the
two d orbitals are smaller than in panel (a). Panels (c)
and (d) of Fig. 2 shows spectra obtained for a stronger
interaction U = 6eV . Panel (c) shows a double-counting
correction corresponding to ∆ = 4eV and chosen to undo
the shift in the d-p splitting. The parameters are far
from the metal-insulator phase boundary and the spec-
tra are seen to be very similar to those computed for the
noninteracting model. In panel (d) we have chosen the
double counting correction to keep the energy separation
between the O states and antibonding p−d states approx-
imately the same as in panel (b). The features near the
Fermi level are narrower than in panel (b) because the
system is closer to the metal-insulator phase boundary,
but the spectra are otherwise similar.
The occupancy na for a given orbital a is defined as

na =

∫ µ

Elow

dω

π
Aa(ω) (3)

and the orbital polarization is

P =
nx2−y2 − n3z2−r2

nx2−y2 + n3z2−r2
(4)

We have chosen the zero of energy such that µ = 0. We
believe it is most physically reasonable to focus on the
difference in occupancy of near Fermi-surface states, cor-
responding to taking Elow = −3eV to capture the anti-
bonding but not the bonding bands. Alternatively, one
may integrate over the whole (many-body) bandwidth.
We have provided the P corresponding to both defini-
tions; the results are very similar and the conclusions are
not changed. The computed d occupancies and polar-
izations are given in the caption and panels of Fig. 2;
interactions decrease the polarizations.
An alternative, low-energy definition of orbital polar-

ization may be obtained from the Fermi surface. In pseu-
docubic LaNiO3 the calculated Fermi surface has two
sheets, corresponding to the two relevant d orbitals.30

In single-layer high-Tc cuprates the Fermi surface has
only one sheet, corresponding to a single relevant d band,
so one may identify a single-sheeted Fermi surface with
an orbitally polarized low energy theory. Fig. 3 shows
the evolution of the Fermi surface of the nickelate super-
lattice as the interaction strength is increased at fixed
∆ ≈ −2. The non-interacting model has a substantial
degree of orbital polarization, as seen from the very small
size of the central Fermi surface region, but as soon as the
interaction is turned on the size of the central patch in-
creases and then does not change over the entire metallic
region, consistent with the values of P given in the cap-
tion of Fig. 2. (The Fermi surface in panel (d) is slightly
smaller because at the lowest accessible temperature the
fully coherent Fermi liquid state was not achieved.)
The small value of P we find is in agreement with re-

cent resonant X-ray absorption experiments31 but does
not agree with results of previous dynamical mean field
studies of Hansmann and collaborators.16,32 While there
are minor technical differences (including the use, by
Hansmann et. al. of an Ising approximation to the
Hunds interaction) we believe that the most important
issue is the model. Refs. 16,32 downfolded the band the-
ory results to a two-band model representing only the
antibonding band, whereas in our work the Ni-O charge
transfer plays an important dynamical role, enabling the
high spin d8L̄ configuration which is not susceptible to
orbital polarization.
Our results suggest that in realistic models of nicke-

late superlattices, a significant orbital polarization will
be very difficult to achieve. However, the two orbitals
will not have identical properties. We present in Fig. 4
the difference ∆A(ω) = Ax2−y2(ω) − A3z2−r2(ω) calcu-
lated for parameters corresponding to Fig. 2(a)-(d). The
d-spectral function may be measured in resonant x-ray
scattering experiments, and difference spectra are rela-
tively insensitive to experimental complications such as
core-exciton and final-state corrections. We see that the
different electronic structures lead to observable effects



4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-10 -8 -6 -4 -2  0  2  4

D
iff

er
en

ce
 (

st
at

es
/e

V
)

 

(a)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-10 -8 -6 -4 -2  0  2  4

 

 

(b)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-10 -8 -6 -4 -2  0  2  4

D
iff

er
en

ce
 (

st
at

es
/e

V
)

Energy (eV)

(c)

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-10 -8 -6 -4 -2  0  2  4

 

Energy (eV)

(d) ∆A(ω)
integral

FIG. 4: (Color online) d-spectrum difference plot ∆A(ω) =
Ax2

−y2(ω)− A3z2−r2(ω) (solid line, red online). Parameters
for (a)-(d) correspond to those in Fig. 2.

on the spectra. In the Nd ∼ 2.0 case (corresponding to
panels (a) and (c) in Fig. 2) the difference spectra reveal
prominent peaks just below the Fermi level (∼ −0.5 eV)
and around ∼ +2.0 eV. These features do not appear in
the Nd ∼ 1.45 cases, (panels (b) and (d) in Fig 2). Also
the two feature provide a measure of the physical εp−εd.

Comparison of these calculations to new generations of
X-ray absorption experiments9,31 may help evaluate the
orbital polarization and pin other material parameters.

In summary, we have shown that in a realistic many-
body model of nickelate heterostructures, it is essentially
not possible to achieve a significant degree of orbital
polarization, so that the idea14 of obtaining a single-
band electronic structure must be discarded. Further,
we showed that a reduction of the full Hamiltonian to a
Hubbard-like model16,32 which includes only the corre-
lated orbitals yields a fundamentally misleading picture
of the electronic structure. We presented spectra which
should help in establishing the actual value of the double-
counting correction for these materials, which is crucial
to the metal-insulator transition behavior.
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