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Abstract: We study electron transport properties of graphene in the presence of 

correlated charged impurities via adsorption and thermal annealing of potassium 

atoms. For the same density of charged scattering centers, the sample mobility 

sensitively depends on temperature which sets the correlation length between the 

scatterers. The data are well understood by a recent theory that allows us to 

quantitatively extract the temperature dependence of the correlation length. 

Impurity correlations also offer a self-consistent explanation to the puzzling sub-

linear carrier density dependence of conductivity commonly observed in monolayer 

graphene samples on substrates. 
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Understanding disorder in graphene [1] is essential for electronic applications; in contrast 

to conventional materials, the extraordinarily low electron-phonon scattering [2,3] in 

graphene implies that disorder [4-8] dominates its resistivity even at room temperature.  

Charged impurities [6,9-11] have been identified as an important disorder type in 

graphene on SiO2 substrates [12,13], giving a nearly linear carrier-density-dependent 

conductivity σ(n), and producing electron and hole puddles [14-16] which determine the 

magnitude of graphene’s minimum conductivity σmin [11].  Correlations of charged 

impurities are known to be essential in achieving the highest mobilities in remotely-

doped semiconductor heterostructures [17-19], and are present to some degree in any 

impurity system at finite temperature.  Here we show that even modest correlations in the 

position of charged impurities, realized by annealing potassium on graphene, can increase 

the mobility by more than a factor of four.  The results are well understood theoretically 

[20] considering an impurity correlation length which is temperature dependent but 

independent of impurity density.  Impurity correlations also naturally explain the sub-

linear σ(n) commonly observed in substrate-bound graphene devices [3,12,13,21]. 

 

Our experiment probes the influence of thermal annealing on the electronic transport 

properties of a graphene device with adsorbed potassium (K) atoms; potassium donates 

an electron to graphene leaving a positive ion as a charged scattering center. We 

previously studied [22] charged impurity scattering in potassium/graphene at low 

temperature (20 K) where the K adatoms are presumed to be frozen randomly on 

graphene. Here we measure the transport properties of graphene as the temperature is 

raised. We expect potassium ions on graphene to experience mutual Coulomb repulsion 
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which drives them away from each other producing correlations in their positions. 

Indeed, early low-energy electron diffraction (LEED) studies of K adsorbed on graphite 

revealed a distinct diffraction peak, which is linked to the nearest-neighbor spacing of the 

dispersed K layer [23]. A recent scanning tunneling microscope (STM) study reached 

similar conclusions [24].  

 

The graphene on SiO2/Si sample was prepared by mechanical exfoliation of natural 

graphite (Nacional de Grafite Ltda.). Electrical contacts are defined with standard 

electron beam lithography and thermal evaporation of chromium/gold (5/90 nm). A 

photomicrograph of the device is shown in Fig. 1 (left inset).  The sample is then 

annealed in H2/Ar gas at 350°C for an hour before mounted on a cold finger inside an 

ultra-high vacuum (UHV) chamber with a base pressure of 6×10-10 Torr.  We bake the 

sample at 200°C under vacuum for a few days to further improve surface cleanliness. 

Figure 1 (right inset) shows the conductivity σ of the pristine device after baking as a 

function of electron density n = cg(Vg-Vg,min)/e where Vg is the gate voltage, Vg,min is the 

gate voltage of minimum conductivity, cg = 11 nF/cm2 is the gate capacitance, and e is the 

elementary charge. The field effect mobility 
dn
d

eFE
σμ 1=  and Drude mobility 

neDrude
σμ 1= of the sample are about 20,000 cm2/Vs at a typical charge density of 1012 

cm-2, which are among the highest for graphene deposited on SiO2/Si substrates [12]. 

Assuming Matthiessen’s rule for long range and short range scatterers the transport curve 

can be quantitatively described (red curve) by  
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(details of the fitting procedure are given in [25]).  Equation (1) has been interpreted as 

reflecting scattering by uncorrelated charged impurities with µL = 26,530 (21,700) 

cm2/Vs and weak point disorder with ρs = 53 (55) Ω for holes (electrons) [3,4,12,13,21], 

though no physical origin for the latter has been identified.   

 

Potassium was deposited by electrically heating up a getter source (SAES Getters) with 

the sample kept at low temperature T = 20 K. Figure 1 (main panel) summarizes the 

effects of increasing potassium density on σ(Vg) at T = 20 K. Vg,min shifts to increasingly 

negative gate voltages with increased potassium density, reflecting electron doping by 

potassium.  The sample mobility decreases by more than an order of magnitude.  These 

observations agree well with our previous studies [22].  

 

We then measure σ(n) at various temperatures from 20 K to 180 K with a fixed Vg,min 

caused by potassium doping.  This comprises one set of data with the same density of 

charged impurities while the impurity location and configuration are changed gradually 

by the rising temperature.   

 

The K atoms are weakly bound to the graphene surface and desorb at high temperatures.  

Making use of this property, after completing one set of measurement we bake the 

sample at 200°C to remove K adsorbates. The sample becomes charge neutral again with 

mobility returning to the 20,000 cm2/Vs range.  We then cool down to low temperature, 

and the experiment was repeated with a different K density. We observed no degradation 
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of sample quality upon repeated experiments; after each baking prior to K doping the 

sample mobility varied by ±10% and the σmin occured at gate voltages -1V ≤ Vg,min ≤ 1V 

[25]. 

 

Figure 2(a-c) shows σ(Vg) at different temperatures for potassium doping levels that result 

in Vg,min  shifts ∆Vg,min  ≈ 78, 41, and 10 V respectively. At all potassium doping levels, the 

conductivity increases with temperature, more rapidly for T > 100K. The minimum 

conductivity point Vg,min  remains fixed for T < 180 K, indicating that doping by 

potassium persists.  (For T > 180 K, we observe Vg,min  shifts toward 0 V, indicating 

potassium migration off the sample or desorption.)  In addition to mobility 

improvements, σ(Vg) also becomes significantly sub-linear at elevated temperatures, in 

contrast to the linear σ(Vg) expected [6,9-11,26]  and observed [22,27] for isolated or 

clustered charged impurity scattering, and observed here at T = 20 K.  The mobility 

improvement and non-linearity are most pronounced for the largest potassium doping 

(largest ∆Vg,min ); the field effect mobility increases over fourfold for the largest ∆Vg,min.   

 

In the Boltzmann formalism for charge transport, the square of screened Coulomb 

scattering potential 
2

( )V q enters the relaxation time approximation when the charged 

impurities are uncorrelated. In the presence of correlation, estimation of relaxation time 

needs to take into account the structure factor )(qS  of the scattering centers and 
2

( )V q is 

replaced with
2

( ) ( )V q S q  [28]. The structure factor is linked to the spatial distribution of 

potassium ions via a Fourier transformation. Here we model the spatial correlation with a 
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simple pair distribution function )(rg  recently proposed by Li et al. in Ref.[20]: )(rg is 0 

for crr <  and 1 for crr >  where cr  is the correlation length, the single additional fit 

parameter. The corresponding structure factor is  

( )1( ) 1 2 c
K c

rS q n J qr
q

π= −       (2) 

where J1 is the Bessel function of the first kind, and nK is the potassium density. The 

resistivity ( )cKK rnn ,,ρ  due to scattering by correlated potassium ions may then be 

calculated by numerical integration [25]. 

 

Taking further into account the fact that there is some initial disorder in pristine graphene 

(right inset of Fig.1) and that there exists temperature-dependent acoustic phonon 

scattering [2,29], we fit our transport curves with the following expression: 

( )( ) 11 )(,,)()(),,( −− ++= TrnnTnTnn cKKphpristineK ρρσσ .  (3) 

)(npristineσ  is determined by fitting to equation (1) (see Fig. 1 right inset) and ρph = [0.1 

Ω/K]×T .  The only free fitting parameters in equation (3) are Kn  and cr .   

 

For each set of data we treat Kn  as a global parameter while cr varies with temperature. 

We note that cr cannot be smaller than 4.9Å since the densest K overlayer on graphene is 

the close packed 2×2 (C8K) structure [23]. In our fits we fix cr = 4.9Å at base 

temperature. With these considerations we find that our data are well described by 

equation (3) as shown by the dashed lines in Fig. 2(a-c) (four additional data sets as well 
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as fits are shown in [25]).  The fits not only describe the mobility increase but also 

capture the increase in the curvature in σ(n). 

 

Figure 3 summarizes the fit parameters. The correlation length is found to increase 

monotonically with temperature, and is insensitive to potassium density which varies 

over an order of magnitude.  The lack of variation of rc with density indicates that the 

short-ranged pairwise potential between potassium ions dominates the interaction, and 

the hard-sphere repulsion model is appropriate.  The correlation lengths found in Fig.3 

are smaller than the K-K distances πnKrc
2 < 1 even at the highest temperatures, consistent 

with this regime where the pair distribution model [20] is applicable.  Using the 

convention that the close packed 2×2 K overlayer corresponds to the coverage θ=1, the 

regime that is studied here is 0.001< θ <0.01. At similar K coverage, LEED studies reveal 

that the K overlayer on graphite gives rise to a distinct diffraction peak that moves to 

higher wavevectors with adding of potassium and becomes better defined at higher 

temperatures [30]. These observations are in accord with our experimental results, further 

substantiating our interpretation that correlation between potassium ions improves with 

temperature and strongly influences the transport properties of graphene devices.  A 

recent study reported [24] strongly correlated potassium (πnKrc
2 ≈ 1) deposited on 

graphite at 11 K at a density about twice the highest density studied here, probably 

reflecting a much more disordered landscape for potassium on highly-corrugated [31] 

graphene on SiO2.  
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Figure 3 inset shows Kn  as a function of ∆Vg,min .  At low potassium densities nK < nimp ~ 

4×1011 cm-2, there is no theoretical prediction, but the simple prediction from geometric 

capacitance 
,ming g

K

C V
n

e
Δ

= (red line) describes our data well.   At high potassium 

densities (greater than the initial impurity density nimp ~ 4×1011 cm-2; see below), the 

experimentally extracted Kn  vs. ∆Vg,min  can be described by the self-consistent theory for 

graphene in the presence of random charged impurity disorder [11,22] with the fitting 

parameter d (distance of impurity to the graphene plane) equal to 1 nm.  This deviation 

qualitatively indicates the incomplete screening by graphene predicted in [11]. That d is 

somewhat larger than the expect potassium-graphene distance of 0.3 nm may indicate 

that the self-consistent approximation is not strictly quantitatively correct. Note that the 

temperature-dependent conductivity data used to probe correlations (Figure 2) were taken 

at doping levels nK ≥ nimp.  For the highest doping levels nK ≈ 10nimp and it is reasonable 

to neglect nimp in our fits to the correlated impurity theory.  That the theory also works 

well for nK ≈ nimp indicates that the single additional parameter (rc) describes well the 

correlations of the mobile impurity population (nK), however we might expect rc to be 

different in the absence of the additional potential imposed by nimp. 

 

Figure 4 shows the temperature dependence of σmin.  σmin varies only slightly with 

potassium doping, as previously observed [22].  Within the self-consistent theory [11], 

σmin = n*eµ, where n* is the residual (puddle) carrier density, and µ the mobility.   

Interestingly, the temperature dependence of σmin is weak, and is very similar to the 

undoped case (∆Vg,min  = 0).  This is surprising, given the large increase in mobility; it 
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suggests a large decrease in the effective (puddle) carrier density at the minimum point 

for correlated disorder.  More work is needed to understand this behavior. 

 

The fact that impurity correlations always produce sublinear σ(n) prompts us to revisit the 

interpretation of equation (1).  While experimental evidence for long range scattering (µL) 

prevails [14-16,22], the source of the proposed weak short range scattering (ρs) is 

mysterious.  In particular STM measurements have found that point defects in graphene 

lattice are extremely rare [15,16], and symmetry-breaking point defects are expected to 

give rise to resonant scattering [32] which experimentally gives a linear σ(n) [7].  

Meanwhile, it is quite likely that the long range scatterers are correlated to some degree.  

We find that correlations in long-range scatterers alone can explain the observed sub-

linearity in σ(n) without invoking point disorder.  

 

In the right inset of Fig.1 we refit σ(n) for the pristine graphene sample to the theory for 

correlated charged impurities, and the result is shown as the blue dashed curve; fit 

parameters are impurity density nimp = 4.6 (3.9) ×1011 cm-2 and rc = 6.1 (7.0) nm for 

electrons (holes).  The fit is almost indistinguishable from equation (1).  This is not 

surprising; for small argument of the Bessel function in equation (2) i.e. 2 1cnrπ < , σ(n) is 

well approximated [20] by equation (1), with µL = µ0/(1 - α) and ρs = 290 Ω × α2  where 

µ0 is the mobility for uncorrelated charged impurities, α = πnimprc
2 < 1 [25].  This is 

consistent with the range of observed ρs of 50-100 Ω on SiO2 [3,13] and h-BN [21].   

Charges are known to be mobile on the surface of SiO2 on a timescale of seconds at room 

temperature [33].  Assuming that the SiO2 mobile surface charges correspond to a 
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nondegenerate plasma frozen at a temperature T0 [17], the correlation length rc = 

κkBT0/nimpe2 ~ 6 nm predicts T0 ~ 170 K which is a plausible temperature for freezing the 

oxide trapped charge configuration.  More experiments are needed to understand the 

degree of correlation of disorder in various substrates used for graphene devices, but 

intentional correlation of disorder e.g. by control of charge trap distributions or by rapid 

thermal annealing and quenching should be a powerful tool to increase mobility in 

graphene devices. 
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Figure captions: 

 

FIG. 1 (color online) Potassium deposition on graphene.  The main panel shows the low 

temperature (20 K) gate voltage dependence of the conductivity for the pristine device 

(black) and successive depositions of potassium (colored).  Potassium density for each 

curve (see below in Fig.3 inset) is indicated (unit: 1012 cm-2). The top left inset shows an 

optical microscope image of the monolayer graphene device used in this experiment, with 

a schematic of the measurement circuit. The scale bar is 3 μm. The right inset shows the 

carrier-density-dependent conductivity of the pristine graphene device. The red curve is a 

fit to equation (1), and the blue curve is a fit to the correlated charged impurity model 

(see text for fit parameters and discussion).  

 

FIG. 2 (color online) Carrier-density dependence of graphene conductivity at various 

temperatures for three different potassium doping levels. (a) ∆Vg,min = 78 V.  The 

temperatures are 21.8, 42.5, 100, 116.5, 130.1, 146.3, 156.6, 162.6 K. (b) ∆Vg,min = 41V. 

The temperatures are 19.4, 50.1, 94.9, 112.8, 126.8, 141.9, 158.5 K. (c) ∆Vg,min = 10V. 

The temperatures are 20.7, 132.7, 141.9, 150.4, 162, 177.2 K. For each set the curves are 

ordered from lowest to highest conductivity; the lowest and highest temperatures are also 

indicated in each panel. The dashed lines are fits to equation (3). The densities of 

potassium used as global fit parameters are shown for each panel. 

 

FIG. 3 (color online) Fit parameters for data in Fig. 2 to theory of correlated impurity 

scattering. The main panel shows the correlation length rc as a function of temperature for 



 15

the seven sets of data at different potassium densities reflected in the shift of the 

minimum conductivity point ∆Vg,min indicated in the legend. The inset shows in log-log 

scale ∆Vg,min dependence of the potassium densities nK obtained from the fits. The red 

dots correspond to the seven sets of temperature dependence data and the grey squares 

are for other potassium doping levels measured at base temperature only. The lines are 

theoretical predictions discussed in the text [11].  

 

FIG. 4 (color online) Temperature dependence of the minimum conductivity. Black 

circles are for pristine graphene and colored symbols are for various potassium densities 

given by the shift of minimum conductivity point ∆Vg,min indicated in the legend. 
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