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We show how sign problems in simulations of many-body systems can manifest themselves in
the form of heavy-tailed correlator distributions, similar to what is seen in electron propagation
through disordered media. We propose an alternative statistical approach for extracting ground
state energies in such systems, illustrating the method with a toy model and with lattice data for
unitary fermions.

PACS numbers: 11.15.Ha, 12.38.Gc, 71.10.Fd, 05.50.+q

I. INTRODUCTION

One of the most challenging and interesting problems
in physics is to understand the properties of a system of
many strongly interacting fermions. Numerical simula-
tion is an important tool for understanding the ground
state, and the common approach is to compute the N -

body correlator CN (τ, φ) = 〈0|ΨN (τ)Ψ†N (0)|0〉φ, where

Ψ†N (0), ΨN (τ) are interpolating fields which create an
N -body state at Euclidean time zero and annihilate it at
time τ , and φ is a stochastic field responsible for fermion
interactions. The field φ could be the dynamical gluon
field in the case of QCD, for example, or an auxiliary
field to induce short-range interactions. For large τ the
averaged correlator asymptotically approaches

〈CN (τ, φ)〉 ∼ Ze−τE0(N) (1)

where E0(N) is the ground state energy of the system

and
√
Z is the amplitude for Ψ to create the ground

state. Therefore if one computes − 1
τ lnCN (τ), where

CN (τ) = 1
N
∑
i CN (τ, φi) is the sample mean computed

on an ensemble of N statistically independent φ fields,
one expects to see a “plateau” at large τ whose height
yields the ground state energy E0(N). Excited state en-
ergies and response of the ground state to probes can also
be computed by modifications of this technique.

The computation of − 1
τ lnCN (τ) can be problematic,

however: it might be excessively noisy, or it may drift
with τ and never find a plateau. We wish to address these
problems here, defining the former as a “noise” problem,
and the latter as an “overlap” problem, both of which
can be related to the sign problem encountered in lattice
simulations at nonzero chemical potential. In particu-
lar, referring to recent lattice simulations by the present
authors of large numbers of unitary fermions, we show
that the problems encountered can be manifestations of
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heavy-tailed distributions for CN (τ, φ) which make com-
puting ln〈CN 〉 very difficult, and that the ideal estimator
for this quantity might not simply be lnCN , as is com-
monly used. We find here that a cumulant expansion in
the log of the correlator is a more efficient estimator, for
example. More generally, we suggest that a study of the
statistics of systems exhibiting noise or an overlap prob-
lem might be exploited to greatly facilitate the extraction
of useful physics from numerical simulations.

II. NOISE AND THE PHYSICAL SPECTRUM

Grand canonical simulations, such as lattice QCD at
nonzero quark chemical potential, typically encounter a
path integral measure neither real nor positive, leading
to an exponentially hard computation [2]. In canonical
simulations, where one computes correlators CN at fixed
particle number, the measure can be real and positive
but the pathology reappears as a noise problem, sampled
values of CN (τ, φ) varying wildly from the mean. This
noise problem does not arise simply because of Fermi
statistics; for example, constructing correlators CN as
N×N Slater determinants of one-body propagators leads
to a computational cost from the determinant only scal-
ing as N3. Instead, the noise problem seems to arise
from the existence of multiparticle states for which the
energy/constituent is lower than for the states one wants
to study, a problem that can occur in bosonic systems
as well. This relation between noise and the physical
spectrum has been quantified by Lepage [3]. For ex-
ample, in QCD the expectation of a 3A quark correla-
tor for a nucleus of atomic number A and mass MA is
〈CA〉 ∼ e−MAτ , while the variance in the sample mean
CA can be estimated as

σ2 =
1

N
(
〈C†ACA〉 − 〈C†A〉〈CA〉

)
∼ 1

N e−3Amπτ (2)

for sample size N . Since CA corresponds to 3A quark

propagators and C†A to 3A anti-quark propagators, the
variance is dominated by the state with 3A pions. Thus
the signal to noise ratio scales as

√
N exp(−ζτ), where

ζ = (MA − 3A
2 mπ) � 0, falling off exponentially with

both time τ and atomic number A. The parameter ζ is
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FIG. 1: Distribution histograms for c = CN (τ, φ) and ln(c) for N = 4 unitary fermions at several times τ , taken from Ref. [1].
Curves fitting ln(c) are Gaussian, implying that c is approximately log-normal distributed, with σ2 increasing with time.

the same that characterizes the sign problem in the grand
canonical case [4, 5], and the noise and sign problems are
therefore presumably closely related.

If the distribution of correlation functions CA was
Gaussian, as assumed in ref. [3], then the small mean
and large variance for CA would imply a high degree
of cancellation between the contributions from different
background gauge fields. However small mean and large
variance is also consistent with a very heavy-tailed dis-
tribution, where typical contributions are very small and
positive, exceptional contributions are extremely large
and positive, and no cancellations are involved.

We argue here that a heavy-tail scenario could be
more generic for correlation functions of large numbers
of fermions. We give examples both from real simula-
tions of unitary fermions, as well as from a simple toy
model. Furthermore, we show that in this case there can
be statistical tools which greatly improve one’s ability to
discern the signal from the noise.

III. UNITARY FERMIONS AND A MEAN
FIELD DESCRIPTION

Nonrelativistic fermions with strong short-range inter-
actions tuned to a conformal fixed point where the phase
shift satisfies δ(k) = π/2 for all k are called “unitary
fermions”. This conformal field theory is interesting to
study both for its simplicity and universality, its chal-
lenges for many-body theory, and because it can be re-
alized and studied experimentally using trapped atoms
tuned to a Feshbach resonance [6]. It is also an ideal
nonperturbative theory for studying fermion sign prob-
lems on the lattice, being simpler and faster to simulate
than QCD. At its most basic, the lattice action is the
obvious discretization of the Euclidean Lagrangian [7]

ψ†(∂τ −∇2/2M)ψ − 1
2m

2φ2 + φψ†ψ (3)

where φ is a nonpropagating auxiliary field with m2

tuned to a critical value, and ψ is a spin 1
2 fermion with

mass M ; a more sophisticated action tuned to reduce dis-
cretization errors was recently presented in [8]. A sim-

ulation of this theory reveals a distribution for N -body
correlators CN (τ, φ) which is increasingly non-Gaussian
at late τ ; in fact, it is lnCN which appears to be roughly
normally distributed, as shown in Fig. 1, so that CN (τ, φ)
is approximately log-normal distributed with an increas-
ingly large σ and long tail at late time.

The appearance of a heavy-tailed distribution should
not be surprising, since the system is similar to electrons
propagating in disordered media, where heavy-tailed dis-
tributions are ubiquitous in the vicinity of the Anderson
localization transition. For example, it is found that for
physical quantities such as the current relaxation time or
normalized local density of states, the distribution func-
tion P (z) scales as exp(−Cd lnd z). A particularly simple
way to derive these results is to use the optimal fluctua-
tion method of Ref. [9], which is a mean field approach.
We can adapt these methods to the current problem,
defining the variable Y = lnCN (τ, φ) and computing its
probability distribution P (y) as

P (y) ∝
∫
Dφe−Sφ δ(Y (τ, φ)− y) =

∫
Dφ

dt

2π
e−S (4)

where Sφ =
∫
d4xm

2

2 φ
2 and S = Sφ− it(lnCN (τ, φ)−y).

Using the PDS subtraction scheme [10] we have m2 =
Mλ/4π, where the renormalization scale λ is taken to be
the physical momentum scale in the problem — in this
case λ = kF ≡ (3π2N/V )1/3, N/2 being the number of
fermions with a single spin orientation. We proceed now
to evaluate this integral using a mean field expansion; it
is not evident that there is a small parameter to justify
this expansion, but the leading order result is illuminat-
ing and fits the numerical data well. We expand about
φ(x) = φ0, t = t0, and use the fact that for large τ the
nth functional derivative of lnCN (τ, φ) with respect to
φ(x) equals the the 1-loop Feynman diagram with n in-
sertions of ψ†ψ in the presence of a chemical potential
µ = k2F /(2M). The equations for φ0 and t0 are given by

t0 = −i m
2φ0

〈n(x)〉c
= −iV m

2φ0
N

φ0 = −y − lnZ + τE0(N)

Nτ
(5)
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where E0(N) = 3NEF /5 is the total energy of N free
degenerate fermions (N/2 of each spin), and Z is the
overlap of the source and sink with the free fermion state.
The leading term in the mean field expansion for P (y)

can therefore be expressed as P (y) ∝ exp
[
− (y−y)2

2σ2

]
with

y = lnZ − τE0(N) , σ2 =
40

9π
E0(N) τ . (6)

This describes a log-normal distribution for the N -
fermion propagator CN (τ, φ), with both mean and vari-
ance growing in magnitude with time in units of the en-
ergy of N free degenerate fermions. In Fig. 2 we plot the

quantities − 1
E0

∂y
∂τ and 1

E0

∂σ2

∂τ as a function of N obtained
from correlator distribution data for unitary fermions at
late τ , and find that the gross features of the results are
compatible with the mean field estimates of unity and
40/9π obtained from eq. (6).

IV. A TOY MODEL

It would be useful to devise an algorithm to reliably
estimate energies without having to exhaustively sample
the long tail of the correlator distribution, yet without
making incorrect assumptions about the exact functional
form of that tail. An approach we suggest here is to ex-
ploit the general relationship between stochastic variables
X and Y = lnX:

ln〈X〉 =

∞∑

n=1

κn
n!

(7)

where κn is the nth cumulant of Y . This relation can
be proved by noting that the generating function for the
κn is lnφY (t) where φY (t) = 〈eY t〉 = 〈Xt〉 is the mo-
ment generating function for Y , and evaluating at t = 1,
assumed to be within the radius of convergence. The mo-
tivation for investigating eq. (7) is that if the distribution
P (X) were exactly log-normal, the above sum would end
after the second term, as κn>2 would all vanish; therefore
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FIG. 2: The quantities − 1
E0

∂y
∂τ

and 1
E0

∂σ2

∂τ
as a function of N

for unitary fermions at late times on a lattice of size L = 10,
compared to mean field prediction eq. (6) (dashed lines).
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FIG. 3: Simulation of the energy Eτ for the model eq. (8)
with g = 1

2
. The exact answer is Eτ = 0 (black line); exact

values of eq. (7) truncated at order n = 2, 3 are indicated.

by replacing the κn by sample cumulants κn and trun-
cating the sum at n = nmax, one might hope to have
a reliable estimator for ln〈X〉, provided that the system-
atic error from truncating eq. (7) and the statistical error
from sampling κn can be simultaneously minimized.

Distributions with log-normal-like tails arise naturally
in products of stochastic variables. The propagator
CN (τ, φ) for unitary fermions can be expressed in a trans-
fer matrix formalism as the product of a τ matrices —
one per time hop — each of which is the direct product of
N V ×V matrices of the form e−K/2(1+gϕ)e−K/2, where
K is a constant matrix (the spatial kinetic operator), ϕ is
a random diagonal matrix with O(1) entries correspond-
ing to stochastic φ fields living on the time links, and g is
a coupling constant (identified with 1/m2 in Eq. 3) that
has been tuned to a particular critical value that is O(1).
Unfortunately, little seems to be known about products
of random matrices beyond dimension two [11]. There-
fore we analyze instead a toy model where we define a
“correlator” Cτ as a product of random numbers, and an
“energy” E = limτ→∞ Eτ where:

Cτ =

τ∏

i=1

(1 + gϕi) , Eτ = −1

τ
ln〈Cτ 〉 (8)

where 0 ≤ g ≤ 1 and the ϕi are independent and iden-
tically distributed random numbers with a uniform dis-
tribution on the interval [−1, 1]. The exact value for the
energy is obviously Eτ = 0 since the statistical average of
the correlator is 〈Cτ 〉 = 1. The cumulants of the variable
Y = ln(Cτ ) are given by

κ1 = τ
[
1
2 log

(
1− g2

)
+ tanh−1(g)

g − 1
]
,

κn
n!

= τ

(
(−1)n
n − Li1−n

(
1+g
1−g

)
(2 tanh−1(g))

n

n!

)

for n ≥ 2; for g < 1 one finds that the κn/n! rapidly
decrease as n increases.

In Fig. 3 we show the results of a simulation where
we compute Eτ for g = 1

2 and τ = 1, . . . , 1000. At each
value of τ we independently generated an ensemble of
values for Cτ of size N = 50, 000. From that ensemble
we computed Eτ by (i) using the conventional estimator
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TABLE I: E determined from 250 blocks of 50,000 configura-
tions each for the model eq. (8) with τ = 1000, g = 1/2.

Method E stat. error syst. error
conventional 0.014932 0.002485 –

κn≤2 -0.002159 0.000304 -0.002165
κn≤3 -0.000412 0.001618 -0.000324
κn≤4 -0.000647 0.008379 0.000050
κn≤5 -0.001794 0.037561 3.34× 10−6

κn≤6 0.010943 0.147739 −1.22× 10−6
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FIG. 4: Energy for 50 unitary fermions in a harmonic trap of
frequency ω, 106 configurations; fits performed using eq. (7)
truncated at order nmax. Inset: conventional effective mass
meff (τ) = logC(τ)/C(τ+1) (green) and corresponding fitted
cumulant effective mass with nmax = 4 (blue).

Eτ = − 1
τ lnCτ (blue), which shows a striking system-

atic error for τ & 50, and statistical noise increasing up
to τ ' 500 but decreasing beyond that; (ii) using eq.
(7) truncated at nmax = 2 using sample cumulants κn
(green), showing a τ -independent systematic error with
smaller but slowly growing statistical error; (iii) eq. (7)
truncated at nmax = 3 (red) with a negligible constant
systematic error but a larger statistical error. Evidently,
one trades systematic error for statistical error by trun-
cating eq. (7) at increasingly large nmax.

Table I displays results of a simulation of 1.25 × 107

φ configurations blocked into 250 blocks of 50,000 each,
for the model eq. (8) at τ = 1000 and g = 1/2. We give
the conventional estimate Eτ = −1/τ lnCτ and estimates

based on the cumulant expansion eq. (7) truncated at
various nmax, where the exact value is E = 0. For each
method we give the computed value for E and the statisti-
cal error; for the cumulant expansion we also give the ex-
act systematic error from truncating eq. (7) at n = nmax
using our analytic expressions for κn. These numbers
show how the conventional method gives a wrong answer
with deceptively small statistical error. For the cumulant
expansion one sees again the trade of systematic error for
statistical error with increasing nmax. Table I shows the
combined error is minimized for nmax = 3, justified by
noting that the nmax = 4 result with statistical errors
encompasses the nmax = 3 result; we suggest this as
a practical algorithm for determining where to truncate
the cumulant expansion in general. Fig. 4 shows how this
works in a real simulation for 50 trapped unitary fermions
[1], where truncating the expansion at nmax = 4 is sup-
ported by the data.

V. DISCUSSION

Heavy-tail distributions are likely to be ubiquitous in
N -body simulations, and perhaps even in other types of
noisy calculations; for example, there seems to be evi-
dence for similar phenomena in multi-baryon computa-
tions in lattice QCD [12]. With such distributions theo-
retical statistical means can deviate wildly from sample
means for any realizable sample size and render conven-
tional estimates of expected fluctuations irrelevant. We
have shown that there are more efficient estimators for
ground state energies using the cumulants of the log of
the correlator instead of the conventional effective mass,
at least for positive correlators. This method is pre-
sumably only effective for nonpositive data provided the
heavy-tail is asymmetric.
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