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We explore the properties of weakly bound bosonic states in the strongly interacting regime. Combining a
correlated-Gaussian basis set expansion with a complex scaling method, we extract the energies and structural
properties of bosonic cluster states with N ≤ 6 for different two-body potentials. The identification of five-
and six-body resonances attached to the first-excited Efimov trimer provides strong support to the premise of
Efimov universality in bosonic systems. Our study also reveals a rich structure of bosonic cluster states. Besides
the lowest cluster states that behave as bosonic droplets, we identify cluster states weakly bound to one or two
atoms forming effective cluster-atom “dimers” and cluster-atom-atom “trimers.” The experimental signatures
of these cluster states are discussed.

Understanding the universal nature of low-energy few-body
physics is a fundamental prerequisite for the development of
effective many-body descriptions in the ultracold regime. In
two-component Fermi gases, the characterization of two-body
physics in terms of a single interaction parameter (the scatter-
ing length) is at the heart of our understanding of the BCS-
BEC crossover. In bosonic systems, the underlying few-body
physics is enriched by the Efimov effect [1, 2] which is cur-
rently a subject of intense experimental exploration in ultra-
cold atoms [3–7]. Efimov physics leads to the formation of a
series of weakly bound trimers that acquire peculiar properties
such as a borromean nature and a discrete scale invariance [2].
While this complexity of three-boson systems has led to a
deeper understanding of universal few-body physics, it poses
an important question as to whether the low-energy behavior
of larger bosonic systems can be understood and characterized
within a simple universal framework.

The natural starting point for addressing this question is
the exploration of Efimov and universal phenomena in in-
creasingly larger systems. For N > 3 systems, a new con-
cept of universality arises in which the low-energy physics
is only characterized by the scattering length and Efimov’s
three-body parameter. In these systems, the exploration of
universality in the low-energy regime is significantly more
challenging because it requires the study of an unstable part of
the spectrum, and therefore the analysis of resonances rather
than bound states. Nevertheless, in the last few years, tremen-
dous progress has been achieved in the understanding of uni-
versality in four-boson systems [8–12]. Despite these impor-
tant advances, there still remain controversies regarding the
scope of universality, the role of the four-body parameter, and
nonuniversal corrections [13–15]. For N > 4 systems, the
applicability of universal theory is even more debatable be-
cause of the lack of theoretical or experimental evidence of
universal behavior. However, the natural continuation to the
four-body predictions of Refs. [8, 9] would indicate that uni-
versality extends to larger clusters whose behavior follows
the Efimov discrete scale invariance and is only controlled
by two and three-body physics. Thus, for each Efimov state
(N = 3), there would be a series of N > 3 cluster states
(or resonances) associated to it, forming an Efimov family.
A recent study [16] based on such a premise of universality
has characterized some properties of the lowest weakly bound

cluster states up to N ≤ 13. While this study provides key
predictions to be theoretically and experimentally explored, it
leaves open questions such as the validity of the universality
hypothesis and the existence of additional weakly bound clus-
ter states.

In this article, we address these questions through the analy-
sis of the structure of the strongly interacting few-boson spec-
tra. Our main result is the identification of five- and six-
boson resonances tied to the first excited-Efimov state (see
Fig. 1). These resonant states represent small bosonic droplets
and are in good qualitative agreement with the prediction of
Ref. [16]. Such evidence of cluster states associated with
excited-Efimov families provides important first indications of
discrete-scale invariance in few-boson systems. Thus, our re-
sults provide much-needed support to the premise of Efimov
universality in few-boson systems. We extend our analysis
to the exploration of different types of cluster states formed
in the lowest Efimov family, which is strongly modified by
nonuniversal corrections. For a range of model potentials,
we find that cluster states (N = 3, ..., 6) are likely to bind
weakly to atoms forming effective cluster-atom “dimers” and
cluster-atom-atom “trimers.” We identify one of these cluster-
atom-atom “trimers” as a resonance that appears energetically
slightly below the lowest Efimov trimer; it can be qualitatively
described as an Efimov trimer formed by an Efimov trimer
and two atoms. This state is one of the simplest bizarre clus-
ter structures mathematically proposed [17]; similar cluster-
atom-atom structures are expected for larger systems. Our
studies reveal an intricate structure of bosonic cluster states
and provide estimates of the N -body resonant positions rele-
vant to experiments.

Our starting point is the few-boson Hamiltonian,

H = −
∑
i

~2

2m
∇2
i +

∑
i<j

V (rij), (1)

where m is the mass of the bosons, and rij is the inter-
particle distance between particles i and j. The two-body
model potential takes the form V (r) = V0(exp[−r2/(2r20)]−
α exp[−2r2/r20]), where r0 is the interaction range, and V0
and α are tuned to change the shape and scattering length of
the potential. For simplicity, we focus on the a < 0 region
with no two-body bound state. To test the model dependence,
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we consider two qualitatively different potentials: purely at-
tractive (V0 < 0 and α ≤ 1) and attractive with repulsive core
potentials (V0 < 0 and α > 1). While the studies consid-
ered −10 < α < 10, most of the results will be presented for
two cases: a purely attractive interaction Va (α = 0) and an
attractive potential with a soft repulsive core Vr (α = 2 and
V0 < 0). The range r0 and the energy Esr ≡ ~2/(mr20) are
the typical energy and length scales that characterize the in-
teractions. The universal regime is characterized by energies
|E| � Esr and length scales (characterizing scattering length
and clusters sizes) of `� r0.

To describe the bound states, we use a correlated-Gaussian
(CG) basis set expansion combined with the stochastical vari-
ational method (SVM) [18] that has been very successful in
describing ground and excited states of bosonic and fermionic
systems with short-range interactions [9, 19]. In our imple-
mentation, the eigenstates of a system are expanded in the set
of CG basis functions in which the center-of-mass coordinate
has been removed and Lπ = 0+. Each basis function is a
symmetrized product of Gaussian functions, each of which
depends on one of the N(N − 1)/2 interparticle distances
and can be written as ψβ(x) = exp

(
−
∑
ij A

β
i,jxi · xj/2

)
,

where x = {x1,x2, ...,xN−1} is a set of (relative) Jacobi
coordinates, and the Aβi,j are a set of parameters that char-
acterize the Gaussian function widths. The convergence of
the results is carefully analyzed by increasing and reopti-
mizing the basis set. To explore the structure of the few-
body states, we extract the pair-distribution function defined
as 4πr2PN (r) = 〈ΨN |δ(r12 − r)|ΨN 〉, where r12 is the in-
terparticle distance between particles 1 and 2, and |ΨN 〉 is the
fully symmetrized N -body wave function.

To study resonances, which have a finite lifetime associated
to the decay onto lower energy states, we use the complex-
scaling method (CSM) [20–22]. In the CSM, all coordinates
are rotated as r → reıθ by a transformation U(θ). The wave
function of the resonance is square integrable in these ro-
tated coordinates and can be expanded in the same square-
integrable basis functions that describe bound states:

Ψθ(x) ≡ U(θ)Ψ(x) =
∑
i

Ci(θ)ψi(x), (2)

where x = {x1,x2, ...,xN−1} is a set of (relative) Jacobi
coordinates. The wave function Ψθ(x) is a solution of the ro-
tated HamiltonianHθ = U(θ)HU(θ)−1 with complex energy
Eθ = ER − iΓ/2, where Γ is associated with the width of the
resonance.

Universal Droplets.– The analysis of the five and six-body
spectra in an energy window close to the first excited Efi-
mov trimer allow us to approach the universal regime. Fig-
ure 1 summarizes the energies of these cluster states for
N = 3, ..., 6. The results are presented as a function of
the relevant universal parameters: 1/κa and E/Eu3 , where
κ =

√
m|Eu3 |/~2 is the three-body parameter, and EuN is the

energy of the N -body cluster at unitarity (a = ∞). The five-
and six-body results are obtained from an analysis of reso-
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FIG. 1: (color online). Energies of the lowest universal cluster state
as a function of inverse scattering length. From top to bottom, the
solid curves represent the N = 3, 4, 5, 6 energies, respectively. The
energies forN = 3 andN = 4 were obtained in previous studies [9].
Note that, in this figure, the energy of the second N = 4 state would
lie almost on top of the trimer energy. The N = 5 solid curve and
symbols correspond to predictions from an excited resonance for Vr

and Va, respectively. The circles and squares are the N = 6 predic-
tions for Vr and Va, respectively, and the solid curve is a guide to
the eye. Dashed curves correspond to the N = 5, 6 predictions from
Ref. [16]. Inset: Width of the five-body resonances for Vr (red) and
Va (blue).

nances attached to the first-excited Efimov family. These res-
onances are observed for both the Va and Vr potentials. At
unitarity, we obtainEu5 ≈ 10.1(1)Eu3 [23], in close agreement
of Ref. [16] predictions of Eu5 ≈ 10.4(2)Eu3 . For N = 6, we
find thatEu6 ≈ 16.3(2)Eu3 , which is slightly smaller in magni-
tude than the predictions from Ref. [16] of Eu6 ≈ 18.4(2)Eu3 .
Interestingly, the energies of the universal states at unitarity
scale roughly with the number of trimer configurations the
cluster contains, i.e., 1, 4, 10, 20 for N = 3, 4, 5, and 6,
respectively. To further verify the model independence of the
predictions, we analyze the pair distribution function at unitar-
ity (see Fig. 2). The good agreement between three different
predictions of P5 and P6 illustrates the universality of such
few-body resonances.
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FIG. 2: (color online). Pair distribution function of the universal
five-body (main figure) and six-body (inset) states. Here κN =√
m|Eu

N |/~2, where Eu
N is the binding energy of the N -body

droplet at unitarity. Solid and long-dashed curves are the predic-
tion from the Va and Vr potential, while the short-dashed curves are
predictions from Ref. [16].

The widths of the four- and five-body resonances depend
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strongly on the open decay channels. In our calculations, res-
onances of the first-excited Efimov family can only decay into
the lowest Efimov family, i.e., into decay channels that are not
in the universal regime. Therefore, we expect the width of the
resonance to be more sensitive to nonuniversal corrections.
For example, our analysis of the first-excited four-body res-
onance leads to a Γu4b ≈ 0.1Eu3 , which is a factor of three
larger than the predicted universal width [12] (similar devia-
tions were reported in the four-body system). The width of
the first-excited five-body resonance is presented in Fig. 1 for
both Va and Vr. The clear differences between the different Γ
predictions illustrate the importance of the nonuniversal cor-
rections for resonances belonging to the lowest-excited Efi-
mov families. However, as in the four-body case, we expect
that the width extracted from the first-excited five-body res-
onance provides a correct order of magnitude estimate of the
widths in the universal limit. We also estimate Γu6b ∼ 0.3Eu3 .

The description of these five- and six-body resonances
is challenging since it entails an exploration of an energy
window that is orders of magnitude smaller than the lowest
cluster-atom fragmentation threshold energy. To obtain an
accurate representation of these resonances, we carry out a
numerical procedure inspired by previous implementations of
the SVM+CSM [21, 22]. In the six-body system, the large
number of avoided crossings between the resonant state and
other states makes it particularly challenging to quantitatively
estimate the resonance energy. However, the main source of
uncertainty in predicting the universal energies comes from
the nonuniversal corrections in the first-excited Efimov fam-
ily. Comparing with similar studies for N = 4, we estimate
that the energies and positions of the resonances discussed be-
low are within 10% of their corresponding universal values.
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FIG. 3: (color online) Spectrum of the lowest Efimov family as a
function scattering length for 3 ≤ N ≤ 6. The thin solid curve
corresponds to the trimer state energy, the short-dashed curves cor-
respond to the four-body states, the long-dashed curves correspond
to the five-body states, and the thick solid curves correspond to the
six-body states. Inset: States formed below the trimer threshold.

Excited cluster states and nonuniversal corrections.– Next,
we analyze the formation of bound states for 3 < N ≤ 6 in
the lowest Efimov family. This study illustrates the structure
of the spectrum in the strongly interacting regime by identify-
ing other types of bound states. It also addresses the issue of

nonuniversal corrections in the regime |a| & r0 that are par-
ticularly important for understanding 133Cs and 7Li Efimov
experiments in which five- and six-body resonant phenomena
are expected to occur at |a| . 3rvdw, where rvdw is the Van
der Waals length. The general structure of the bosonic spec-
trum is shown in Fig. 3. These results correspond to the po-
tential Va. This structure, although it changes quantitatively,
remains qualitatively the same for a range of model potentials.
The lowest N -body state is analogous to the universal states
shown in Fig. 1. However, the energy of the lowest N -body
states grows very fast with the number of particles, implying
that nonuniversal corrections increase with N (in agreement
with Ref. [14]). For example, the energy per particle of the
lowest trimer state of Va at unitarity is ∼ 0.04Esr, while the
energy per particle of the lowest six-body state at unitarity is
∼ 0.6Esr. The latter result implies that Eu6 /E

u
3 ∼ 30, al-

most a factor of two larger than the universal predictions. The
introduction of a repulsive three-body force, as proposed in
Ref. [16], leads to a ratio of Eu6 /E

u
3 ∼ 18, which is signifi-

cantly closer to the universal predictions.
The increasing importance of nonuniversal corrections as

N increases is also reflected in the pair distribution functions
presented in Fig. 4. As N increases, the lowest cluster states
become more localized in the nonuniversal region (r . r0)
and, therefore, become less universal. The single peak struc-
ture of the pair distribution indicates that these states are ba-
sically droplets that are mainly described by configurations in
which all particles are at similar distances.
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FIG. 4: (color online) Pair distribution functions of the lowest N -
body cluster states (N = 3, ..., 6) at unitarity. Inset: Distribution
functions for the trimer (’3’), the trimer-atom four-body state (’3+1’),
and the trimer-atom-atom five-body state (’3+1+1’).

The excited states (with energies E4,2, E5,2, and E6,2) are
much closer to the lowest fragmentation threshold and can be
qualitatively described as cluster-atom “dimers” with one par-
ticle loosely bound to an N − 1 cluster state. This structure
can also be identified in the pair correlations that coincide at
small r with the N − 1 cluster pair correlation, but it has a
longer tail that describes the cluster-atom correlation (cf. the
inset in Fig. 4).

We also identify another five-body resonance, presented in
Fig. 3 as E5,3, that is a state energetically below the low-
est trimer-atom-atom fragmentation threshold that can decay
into the lowest tetramer-atom channel. The energy and the



4

pair-distribution function show that the state is qualitatively
described as a trimer weakly bound to two atoms, forming
a trimer-atom-atom state. The energies at unitarity of such
states are 1.3Eu3 (Va) or 1.2Eu3 (Vr), i.e., slightly below the
trimer and the second tetramer energies, suggesting that most
of the contribution of the energy comes from the bonding of
the trimer subcluster. Furthermore, the pair-distribution func-
tion shows two clear peaks that can be identified as coming
from atom-atom correlations inside the trimer subcluster and
atom-atom correlations between an atom inside the trimer and
an atom outside the trimer.

These states can be experimentally observed in ultracold
gases through the analysis of N -body recombination pro-
cesses [24]. Current experiments have identified three- and
four-body resonances through the observation of losses at the
predicted resonance positions [3–7]. At low temperatures, the
N -body resonant enhancement of losses occurs at the criti-
cal interaction strengths at which an N -body cluster becomes
resonant with the free particle-scattering continuum. If the
N -body clusters behave universally, the positions of the res-
onances are given by critical scattering lengths a∗N that are
only controlled by the three-body parameter; the ratio between
any two a∗N is a universal number. We estimate nonuniversal
corrections to these scattering-length ratios by analyzing the
lowest Efimov family. In a range of model interactions, we
find that 0.45 . a∗4/a

∗
3 . 0.47 and 0.63 . a∗5/a

∗
4 . 0.67.

The description of the six-body state is more challenging,
and we estimate a∗6/a

∗
5 ∼ 0.73 − 0.74 in a reduced set of

model potentials. The four-body predictions are relatively
close to the universal prediction of a∗4/a

∗
3 ≈ 0.43, and their

deviations are comparable to those observed in experiments
(which also analyze the first Efimov family). The five- and
six-body scattering-length ratios are in the same ballpark of
Ref. [25] predictions (a∗5/a

∗
4 ≈ 0.69 and a∗6/a

∗
5 ≈ 0.78) and

of Ref. [16] (a∗5/a
∗
4 ≈ 0.6 and a∗6/a

∗
5 ≈ 0.7) based on dif-

ferent model interactions. From the analysis of the five and
six-body resonances in the first excited Efimov family, we es-
timate universal scattering-length ratios of a∗5/a

∗
4 ≈ 0.66, and

a∗6/a
∗
5 ≈ 0.78.

In conclusion, we have investigated the existence of uni-
versal five- and six-body resonances. In experiments, these
five- and six-body states should manifest as a loss peak at the
critical scattering lengths that, for the Cs experiments at Inns-
bruck [3, 4], should occur approximately within −290a0 .
a∗5 . −260a0 and −230a0 . a∗6 . −180a0. Future studies,
with a more realistic description of the short-range physics,
can further restrict these values. Our results provide support
for the hypothesis of a universal regime in which bosonic sys-
tems are only controlled by two- and three-body physics. We
extended the analysis to the lowest Efimov family and identi-
fied a rich structure of bound states and resonances in bosonic
systems with large scattering lengths. While this structure is
affected by important nonuniversal corrections, it can be still
interpreted as emerging from a universal behavior. There-
fore, part of this qualitative structure is expected to persist

in the universal regime. In particular, we expect the persis-
tence of universal trimer-atom-atom resonant states. A re-
cent study [12] predicts a large atom-trimer scattering length,
implying that, even in the universal regime, the trimer-atom-
atom system fulfils Efimov conditions for the formation of
weakly bound trimers. The emergence of a universal picture
for bosons suggests a reinterpretation of previous studies on
strongly interacting systems. For example, one can speculate
that the similarities found in the formation of small 4He and
Tritium clusters [26] have their root in an underlying universal
behavior that has Efimov physics at its root, but is modified by
nonuniversal corrections.
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