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We show that three-band superconductors with broken time reversal symmetry allow magnetic flux-carrying
stable topological solitons which have only a slightly higher energy than ordinary vortices. Therefore they can
be induced by fluctuations or quenching the system through a phase transition. It can provide an experimental
signature of the time reversal symmetry breakdown.

Experiments on iron pnictide superconductors suggest the
existence of more than two relevant superconducting bands
[1, 2]. The new physics which can appear in these circum-
stances is the possible superconducting states with sponta-
neously broken time reversal symmetry (BTRS) as a conse-
quence of frustration of competing interband Josephson cou-
plings [2] (other scenario for BTRS state was discussed in
[3]). BTRS states also attracted much interest earlier in the
context of unconventional spin-triplet superconducting mod-
els. There they have a different origin and are described by
two-component Ginzburg-Landau models [4]. In those cases
the theory predicts domain walls which pin vortices [4]. It was
suggested that this can result in formation of experimentally
observable vortex sheets if (i) a domain wall itself is pinned
by sample inhomogeneities, or (ii) if a domain is dynamically
formed inside a current-driven vortex lattice [4].

Here we show that a BTRS state in a three-band supercon-
ductor allows formation of metastable topological solitons.
Although it is not by any means required to be near Tc for
these solitons to exist, we use a static three-band Ginzburg-
Landau (GL) free energy density model :
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Here, D = ∇ + ieA, and ψi = |ψi|eiϕi are complex
fields representing the superconducting components. We
choose to work here with a minimal effective potential V ≡∑
i=1,2,3 αi|ψi|2 + 1

2βi|ψi|
4. Although there could be vari-

ous other terms allowed by symmetry in (1) they are not qual-
itatively important for the discussion below. For ηij > 0,
the Josephson interaction term is minimal for zero phase dif-
ference, while ηij < 0 it is minimal for ϕi − ϕj = π.
When the signs of ηij coefficients are all positive, [we de-
note it as (+ + +)] the ground state has ϕ1 = ϕ2 = ϕ3.
Similarly in case (+ − −) one has phase locking pattern
ϕ1 = ϕ2 = ϕ3 + π. However in cases (+ +−) and (−−−)
there is a frustration between the phase locking tendencies
[i.e. one cannot simultaneously satisfy cos(ϕi − ϕj) = ±1].
For example, consider the case αi = −1, βi = 1 and
ηij = −1. Without loss of generality lets set ϕ1 = 0 then
two ground states are possible ϕ2 = 2π/3, ϕ3 = −2π/3 or
ϕ2 = −2π/3, ϕ3 = 2π/3. Note that the frustrated phase dif-
ferences can assume values different from 2πn/3 in case of

differing effective potentials or Josephson coupling strengths.
Thus in these frustrated cases there is Z2 broken symmetry in
the system associated with complex conjugation of the all ψ
fields. The broken Z2 symmetry implies existence of domain
walls solutions, which are schematically shown on Fig. 1.

Figure 1. (Color online) – Schematic representation of various Z2

domain walls in three-band superconductors with different frustra-
tions of phase angles, shown by arrows of different colors. Pink line
schematically shows phase difference between red and green arrow,
interpolating between the two inequivalent ground states.

Let us now outline basic properties of the model (1). With-
out intercomponent Josephson coupling and αi < 0, its sym-
metry is [U(1)]3. Then it allows three kinds of fractional flux
vortices with logarithmically diverging energy [5] character-
ized by a phase winding in (i.e. integral over a phase gradi-
ent around a vortex) ∆ϕi ≡

∮
σ
∇ϕi = 2π. Such a vor-

tex carries a fraction of magnetic flux quanta (Φ0), given by
Φi = |ψi|2/(|ψ1|2+ |ψ2|2+ |ψ3|2)Φ0. However a bound state
of three such vortices (i = 1, 2, 3) has a finite energy. The
finite-energy bound state is a “composite" vortex which has
one core singularity where |ψ1| + |ψ2| + |ψ3| = 0. Around
this core all three phases have similar winding ∆ϕi = 2π.
Thus it is a logarithmically bound state of fractional vortices
whose flux adds up to one flux quantum Φ0. In case of non-
zero Josephson coupling fractional vortices are bound much
stronger since they interact linearly [5].

We show below that the model (1) remarkably has a dif-
ferent kind of stable topological excitations distinct from vor-
tices. Note that in two-component superconductors Skyrmion
and Hopfion topological solitons can be represented as bound
states of two spatially separated fractional vortices [6]. Like-
wise we can represent a topological soliton carrying N flux
quanta (i.e. with each phase winding 2πN ) in a three compo-
nent superconductor like a stable bound state of spatially sep-
arated 3N fractional vortices. Below we will call it “GL(3)

soliton". At first glance, split fractional vortices could not be
stable in the model (1) because of the strong linear attractive
interaction between fractional vortices caused by Josephson
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couplings. However we show that such solutions exist as topo-
logically nontrivial local minima in the energy landscape of
the model (1). These solutions may also be viewed as combi-
nations of fractional vortices and closed domain walls.

Domain walls can form dynamically by a quench, but due to
its line tension a single Z2 closed domain wall (i.e. a domain
wall loop) should rapidly collapse. Because of the field gra-
dients, the superfluid density is suppressed on a domain wall.
Therefore it can pin vortices. Furthermore at a domain wall
one has energetically unfavorable values of cosines of phase
differences cos(ϕi −ϕj). Thus Josephson terms immediately
at the domain wall energetically prefer to split integer flux vor-
tices into fractional flux vortices since it allows to attain more
favorable phase difference values in between the split frac-
tional vortices. (Note that, away from domain walls, Joseph-
son terms give in contrast attractive interaction between frac-
tional vortices). We find that if the magnetic field penetration
length is sufficiently large, then there is a length scale at which
repulsion between the fractionalized vortices pinned by do-
main wall counterbalances the domain wall’s tension. It thus
results in a formation of a stable topological soliton made up
of 3N fractional vortices. Thus these topological solitons rep-
resent a closedZ2 domain wall along which there areN points
of zeros of each condensate |ψi|. Around each of these zeros
the phase ϕi changes by 2π. The total phase winding around
the soliton is

∮
∇ϕ1dl =

∮
∇ϕ2dl =

∮
∇ϕ3dl = 2πN .

Therefore it carries N flux quanta.
Since it is a complicated nonlinear problem, no analytical

tools are available and thus a conclusive answer if these soli-
tons are stable could only be obtained numerically. We per-
formed a numerical study based on energy minimization us-
ing a Non-Linear Conjugate Gradient algorithm showing the
existence and stability of the GL(3) solitons. Technical de-
tails of numerical calculations are available as supplementary
online material. The general tendency which we observed
is, that in contrast to most of the known topological soli-
tons, they are more stable at higher topological charges. In
fact we did not find any stable solitons for the lowest topo-
logical charge corresponding to enclosed one quanta of mag-
netic flux (N = 1). The lowest topological charge solutions
we found carry two flux quanta, and thus consist of six frac-
tional vortices residing on a closed domain wall. The Fig. 2
shows the N = 2 soliton in a superconductor with two pas-
sive bands (thus in this respect, similar to the models which
are believed to be relevant for iron pnictide) coupled to an
active band. Although it consists of six fractional vortices,
one of the bands in this example has larger density and thus
the magnetic field has two pronounced peaks near singulari-
ties in the main band. This is because the fractional vortices
in that band carry the largest amount of the magnetic flux
Φ3 = |ψ3|2/[|ψ1|2 + |ψ2|2 + |ψ3|2]. So the magnetic field
profile of this soliton resembles a vortex pair. We similarly
found N = 2 solitons for superconductor with three passive
bands and for three active bands which was not qualitatively
different from the one shown on Fig. 2.

We find that solutions with larger number of flux quanta

Figure 2. (Color online) – N = 2 topological solitons for two
similar passive bands (αi, βi) = (1, 1) with interband coupling
η12 = −3. These bands have Josephson coupling η13 = η23 = 1
to the third band, which is active (α3, β3) = (−2.5, 1). The
system is type-II with e = 0.07 (we use coupling constant e in
(1) to parametrize inverse penetration length). The panel A dis-
plays the magnetic field B. Panels B and C respectively display
(ψ∗

1ψ2−ψ1ψ
∗
2)/2i and (ψ∗

1ψ3−ψ1ψ
∗
3)/2i, showing the phase dif-

ference between two condensates. Second line, shows the densities
of the different condensates |ψ1|2 (D), |ψ2|2 (E), |ψ3|2 (F). The
third line displays the supercurrent densities associated with each
condensate |J1| (G), |J2| (H), |J3| (I). Phase differences on pan-
els B and C show that there is a closed domain-wall since there
are two areas with different phase-lockings (blue and red) associated
with two possible ground states. The solution consists of N = 2
vortices which are fractionalized : indeed, the panels D, E and F
show separated highly asymmetric pairs of singularities of different
condensates. Note the very complicated geometry of supercurrent
densities shown on panels G, H and I.

tend to have ring-like shapes. The Fig. 3 gives an example
of a solution with N = 8 flux quanta. Note that this ob-
ject will have a very distinct magnetic signature which can be
distinguished by scanning SQUID or Hall or magnetic force
microscopy. Despite the fact that this object is a bound state
of 24 fractional vortices, the magnetic field has only 8 pro-
nounced maxima. They coincide with the position of the 8
singularities in the band with the largest density.

The magnetic structure of the soliton always clearly reflects
the relative densities the bands. When the ground state densi-
ties in each band are equal, the magnetic field has a uniform
ring-like geometry as shown on Fig. 4.

When disparity of the densities in different bands is small
there is also a family of N quanta solitons which have 2N
pronounced maxima in the magnetic field. An example with
N = 4 is shown on Fig. 5.

We investigated numerically more than 500 parameter sets
in three-component BTRS GL models. For all type-II three-
component BTRS GL models we found stableGL(3) solitons,
provided the topological charge was large enough. The solu-
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Figure 3. (Color online) –N = 8 quanta soliton for the same param-
eter set as in Fig. 2 except that e = 0.3 and (α3, β3) = (−1.5, 1),
giving less disparity in the ground state densities (displayed quanti-
ties are the same as in Fig. 2). The cores of vortices in each bands
do not coincide. Note the complicated structure of currents in each
band.

Figure 4. (Color online) –N = 5 quanta soliton with e = 0.3. With
three identical passive bands (αi, βi) = (1, 1), with superconductiv-
ity induced by repulsion ηij = −3 between the three condensates.
Displayed quantities are the same as in Fig. 2.

tion existed in BTRS states irrespectively of whether bands
are active or passive and for very different effective potentials
and interband coupling strengths. It indicates that these soli-
tons should be rather generic excitations in three-component
type-II BTRS superconductors. Fig. 6 shows the energy and
stability of the solitons for different values of the coupling
constant e (in our parametrization e controls the inverse mag-
netic field penetration length). It reflects the generic tendency
which we find, that the solitons are more stable in more type-II

Figure 5. (Color online) – N = 4 quanta soliton for two similar
passive bands coupled to a third active band. The parameter set used
here is the same as in Fig. 3 except (α3, β3) = (−0.5, 1) and e =
0.2. Displayed quantities are the same as in Fig. 2.

regimes and also at higher topological charges.
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Figure 6. (Color online) – Energies of the solitons per flux quanta,
in the units of the energy of a single ordinary vortex (left). When
the electric charge increases (i.e. the penetration length decreases)
solitons with smaller N become unstable. The right panel shows
crossections of the magnetic field for solitons with N ∈ [2, 8]
(double-peak curves). The central curve corresponds to a crossection
of a regular N = 1 vortex. The parameters of the Ginzburg-Landau
model used here are the same as in Fig. 4, which gives nearly axially-
symmetric magnetic field.

Lets us now address the physical observability of these soli-
tons. First in all the cases which we studied in the model (1),
the solitons with N flux quanta were more energetically ex-
pensive than N isolated one-quanta vortices. However they
are protected by an energy barrier against decay into ordinary
vortices. Note that because the solitons are obtained as so-
lutions of the energy minimization problem, they are guaran-
teed to be stable against infinitesimally small perturbations.
However, since they are more energetic than vortices, strong
enough perturbation should destabilize them. This stability
question is addressed numerically in the Supplementary ma-
terial. For strongly type-II regime the potential barrier can be
estimated as the energy needed to disconnect the domain wall.
For a soliton in a three-dimensional sample with phase wind-
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ing in the xy-plane the potential barrier can be estimated as
[coherence length]2×[sample size in the direction of applied
magnetic field]×[condensation energy density].

Being more expensive than vortices, these objects cannot
form as a ground state in low external field [7]. However as
demonstrated in Fig. 6 they are not much more energetically
expensive than vortices. In fact the corresponding energy dif-
ferences can be just a few percent. Thus they can be excited
by either by (a) thermal fluctuations or (b) by quenching in a
sample subjected to a magnetic field. To address the scenario
(b) of possible formation of these solitons in a post-quench
relaxation, we have to assess “capture basin" of these solu-
tions (i.e. how large is the area in the free energy landscape
from which an excited system would relax into the local mini-

mum corresponding to a soliton. Although studying real post-
quench relaxation dynamics is beyond the scope of this paper,
nonetheless we can directly assess the capture basin of the
solutions from the evolution of the system in our relaxation
scheme (see also remark [8]). We investigated several hun-
dreds regimes and found that solitons typically easily form
when a system is relaxed from various higher energy states.
This indicates that the capture basin of these solutions is typi-
cally very large. We find that these defects in fact very easily
form during a rapid expansion of vortex lattice (which should
occur when magnetic field is rapidly lowered, or if a system
is quenched through Hc2). A typical example is shown on
Fig. 7. Animations of these processes are available as a sup-
plementary online material [9].

Figure 7. (Color online) – The soliton formation during energy relaxation of an initial state of expanding group of vortices in a circular
system with open boundary conditions. First line displays the energy density. Second line shows the phase difference between condensates
(ψ∗

1ψ2−ψ1ψ
∗
2)/2i. When domain walls form they separate two inequivalent ground states (blue and red). Third line is the density of the first

condensate |ψ1|2. Initial configuration has a high density of 13 vortices in the center. Repulsive type-II interaction makes all vortices move
away from each other and escape the sample. In the process of energy minimization domain walls and GL(3) solitons form. Domain wall
connected to boundaries quickly disappear. The final picture shows the resulting long-living state of a well separated N = 4 GL(3) soliton
and a vortex. Parameter set used here is the same as in Fig. 4, with e = 0.4.

In conclusion, we have shown that BTRS state of a three-
band superconductor can be detected through its magnetic re-
sponse. Namely we have demonstrated that in this state the
system has two kinds of flux carrying topological defects :
ordinary vortices and also a different kind of topological soli-
tons. These solitons are only slightly more energetically ex-
pensive than vortices (in some cases we found the energy dif-
ference as small as 10−2Ev where Ev is the energy of a vor-
tex). They should form during a post-quench relaxation of a
BTRS superconductor in an external field, since they repre-
sent local minima with a wide capture basin in the free en-
ergy landscape. I.e. a system should relax to these local min-
ima from a wide variety of excited states. Then these solitons
can be observed in scanning SQUID, Hall, or magnetic force
microscopy measurements. They can provide an experimen-
tal signature of possible BTRS states in iron pnictide super-
conductors. A tendency for vortex pair formation, yielding

magnetic profile similar to that shown on Fig. 2 was observed
in Ba(Fe1−xCox)2As2, [10] as well as vortex clustering in
BaFe2−xNixAs2 [11]. These materials have strong pinning
which can naturally produce disordered vortex states [11], al-
though a possibility of “type-1.5" scenario for these vortex
inhomogeneities was also voiced in [11]. The vortex pairs
observed in [10] can be discriminated from N = 2 solitons
(such as that shown on Fig. 2), by quenching the system and
observing whether or not it forms vortex triangles, squares,
pentagons etc corresponding to higher-N solitons.
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