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Four-component massive and massless Dirac fermions in the presence of long range Coulomb interaction
and chemical potential disorder exhibit striking fermionic quantum criticality. For an odd number of flavors of
Dirac fermions, the sign of the Dirac mass distinguishes thetopological and the trivial band insulator phases,
and the gapless semi-metallic phase corresponds to the quantum critical point that separates the two. Up to
a critical strength of disorder, the semi-metallic phase remains stable, and the universality class of the direct
phase transition between two insulating phases is unchanged. Beyond the critical strength of disorder the semi-
metallic phase undergoes a phase transition into a disordercontrolled diffusive metallic phase, and there is no
longer a direct phase transition between the two types of insulating phases. Our results are also applicable to
even number of flavors of Dirac fermions, and the band inversion transition in various non-topological narrow
gap semiconductors.

The low energy, long wavelength quasi-particle spectrum of
various narrow gap semiconductors is well approximated by
noninteracting(3 + 1)-dimensional massive Dirac fermions
and by adjusting the chemical composition, or by applying
pressure, the sign of the Dirac mass can be changed at a band-
inversion transition (BIT). At BIT the system becomes semi-
metallic (SM) and is described by massless Dirac fermions.
The SM phase is an interesting example ofz = 1 fermionic
quantum critical point (QCP). In the massless phase, the con-
duction and valence bands cross at a discrete number of di-
abolic points inside the Brillouin zone and depending on the
number of inequivalent diabolic points we obtain multiple fla-
vors of Dirac fermions. The narrow gap semiconductors such
as Pb1−xSnxTe (four flavors),Bi1−xSbx and Hg1−xCdxTe
(each with single flavor) are well known examples, which for
special values ofx, become massless [1]. For odd number
of Dirac fermion flavors, the QCP describes the phase transi-
tion between a topological insulator (TI) and an ordinary band
insulator (BI) [2–5]. The recent experimental observationof
TI phase in different narrow gap semiconductors have spurred
our interest in the(3 + 1)-dimensional Dirac materials [4, 5].
The low energy spectrum of materials likeBi1−xSbx,Bi2Te3,
Bi2Se3, where TI phase has been observed are all described
in terms of a single flavor massive Dirac fermion [6, 7].

The stability of the disorder free SM phase in the presence
of long range Coulomb interaction and the noninteracting SM
phase in the presence of random chemical potential disorder
were respectively addressed in Refs. [8] and [9]. Recently
the noninteracting, disordered(3+1)-dimensional TI has been
considered in Refs. [10, 11]. For the noninteracting disordered
problem a symmetry based ten-fold classification of TI and su-
perconductors has been described in Ref. [12], and the stabil-
ity of the two dimensional surface states has been discussedon
the basis of this symmetry classification. The noninteracting
TI in the presence of generic time reversal symmetric disorder
belongs to the symplecticAII class. In general such classifi-
cation does not hold in the presence of interaction. The sta-
bility of the two dimensional disordered and interacting sur-
face states of a TI has been addressed in Ref. [13]. However,

the combined effects of interaction and disorder on the bulk
fermions has not been considered before. Motivated by this
and possible future experiments in which novel QCPs can be
explored, we analyze the problem of both massive and mass-
less Dirac fermions in the presence of Coulomb interaction
and random chemical potential type disorder using a pertur-
bative renormalization group (RG) analysis. Remarkably, the
vanishing density of states at the Dirac points renders sucha
calculation reliable in comparison to the corresponding non-
relativistic problem.

For orientation we first consider the disorder free nonin-
teracting Dirac fermion action. For simplicity we consider
only one species of Dirac fermion. Assuming inversion (par-
ity) and time reversal symmetry and using a spinor basis
ψT = (c+,↑, c+,↓, c−,↑, c−,↓), wherec±,s respectively cor-
respond to the annihilation operators for parity even and odd
states, with spin projections, we can write the following Eu-
clidean action

S0 =

∫

d4xψ̄

[

γ0(∂0 −A∂2j ) + ivγj∂j +m−B∂2j

]

ψ. (1)

The latin indexj is a spatial index andΛ ∼ 1/a is the ul-
traviolet cutoff, wherea is the lattice spacing. The parameter
v is the Fermi velocity andm is the Dirac mass. The anti-
commuting Euclideanγ matrices satisfy{γµ, γν} = 2δµ,ν,
and ψ̄ = ψ†γ0. The four-component spinor structure arises
from the two-sublattice crystallographic structure and the two
spin components. We have also incorporated two higher gra-
dient terms involvingA andB. The above action is invariant
with respect to the parity (P) and time reversal (T ) transfor-
mations:PψP−1 = γ0ψ, T ψT −1 = −γ1γ3ψ. ForA = 0,
the action is also invariant under charge conjugation (particle-
hole) transformation (C): CψC−1 = −γ2ψ. The particle-hole
symmetry breaking term does not affect the topological prop-
erties, and can be off-set by adjusting of the chemical poten-
tial, and henceforth we will setA = 0.

The fermion massm and the higher gradient term Propor-
tional toB break theU(1) chiral symmetry of the massless
Dirac fermions defined byψ → ei(θ/2)γ5ψ, ψ̄ → ψ̄ei(θ/2)γ5 ,
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whereγ5 = γ0γ1γ2γ3. The TI and BI phases are respectively
defined by the conditionsmB < 0 andmB > 0 and are sep-
arated by a finite chiral angleδθ = π. This is reflected in the
quantized magneto-electric coefficientsπ and0, respectively
for TI and BI. At the critical pointm = 0, the dynamic expo-
nentz = 1, and in the RG sense the higher derivative terms
can be ignored.

The Dirac structure of the Hamiltonian allows various types
of disorder. The constraint of time reversal invariance allows
the following six bilinears:ψ̄γ0ψ, ψ̄ψ, ψ̄γ0γ5ψ andψ̄γ0γjψ
(j = 1, 2, 3). The bilinears̄ψγ0ψ, ψ̄ψ respectively correspond
to random chemical potential and random mass scattering.
The physical description of other four bilinears depends onthe
crystallographic details. We shall concentrate on the random
chemical potential as the dominant elastic scattering process,
and addSD =

∫

d4xV (x)ψ̄γ0ψ to the actionS0. The random
potentialV (x) is a Gaussian white noise distribution specified
by the disorder average〈〈V (x)V (x

′

)〉〉 = ∆V δ
3(x−x

′

). The
detailed analysis for generic time reversal symmetric disorder
is provided in the supplementary material [14].

Since typicallyv/c ∼ 10−2 − 10−3 (c is the velocity of
light), the Coulomb interaction is instantaneous. Its strength
is characterized by the the dimensionless parameterα =
e2/(4πεv) ∼ 2.2/ε − 22/ε, whereε is the static dielectric
constant of the material. We perform disorder average using
the replica method, which we use merely as a book-keeping
device for perturbative RG calculations. The replicated Eu-
clidean action after disorder averaging of the partition func-
tion is

S =

∫

d4x

[

ψ̄a

{

γ0(∂0 + igϕa) + vγj∂j +m−B∂2j
}

ψa

+
1

2
(∂jϕa)

2

]

− ∆V

2

∫

d3xdx0dx
′

0

(

ψ̄aγ0ψa

)

(x,x0)

×
(

ψ̄bγ0ψb

)

(x,x
′

0
)
(2)

where g =
√
4πvα, and a, b are replica indices. We

have used the abbreviated notation
(

ψ̄aγ0ψa

)

(x,x0)
≡

ψ̄a(x, x0)γ0ψa(x, x0). We have introduced an auxiliary
scalar potentialϕa to decouple the four-fermion Coulomb in-
teraction term. Unlike two dimensions, the Coulomb interac-
tion manifests itself as(∂jϕa)

2, which is analytic in momen-
tum andg can certainly receive loop corrections. The action
S preserves all three discrete symmetriesP , T andC. For
RG calculations we replace the couplings by the correspond-
ing dimensionless couplingsm → m/(vΛ), B → BΛ/v and
∆V → ∆V Λ/(2π

2v2). The details of the RG calculation are
provided in the supplementary material [14].

The density of states for massless and massive problems
are, respectively,ρ(E) ∝ E2 andρ(E) ∝ |E|

√
E2 −m2.

Since the the density of states vanishes at zero energy, the
scattering rateτ−1(E) calculated from lowest order Born ap-
proximation also vanishes at zero energy. At the tree level,
B and∆V are irrelevant couplings, andα andm are respec-
tively marginal and relevant couplings. Therefore we antic-
ipate that the universality class of the QCP between TI and

BI will be unchanged up to a critical strength of the disorder.
This should be contrasted to the two dimensional problem,
where the chemical potential disorder is a marginally relevant
perturbation and invalidates the lowest order Born approxima-
tion result [15].
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FIG. 1: (a)The RG flow and (b) the phase diagram in theα − ∆V

plane for massless Dirac fermions withm = B = 0. The CDM
phase represents a disorder induced massless, compressible diffusive
metallic state with finite density of states and scattering rate at zero
energy.

Consider first the massless Dirac fermions withB = 0.
From a momentum shell renormalization group (RG) calcula-
tion toO(α2), O(∆2

V ), andO(∆V α), we find

dv

dl
= v

(

z − 1−∆V +
2α

3π

)

, (3)

dα

dl
= α

(

∆V − 4α

3π

)

, (4)

d∆V

dl
= ∆V

(

−1 + 2∆V − 8α

3π

)

. (5)

By keepingv fixed we obtain a scale dependent dynamic
exponentz(l) = 1 + ∆V (l) − 2α(l)/3π. There are two
fixed points: (i) attractive, noninteracting, clean fixed point:
∆V = α = 0, z = 1; and (ii)noninteracting finite disorder
critical point: ∆V = 1/2, α = 0 , z = 3/2. For the nonin-
teracting disordered problem, the fixed point (ii) controlsthe
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transition between the two phases where disorder is respec-
tively irrelevant (SM) and relevant. In the phase where disor-
der is relevant, both the zero energy density of states, and the
zero energy scattering rates are finite. Therefore this disorder
induced phase will be termed a compressible diffusive metal
(CDM). The RG flow and the associated phase diagram are
respectively shown in Fig. 1(a) and Fig. 1(b).

By linearizing the flow equations in the vicinity of the fixed
point (ii), we findα(l) ≈ α0e

l/2, and∆V −1/2−8α/(3π) ≈
(∆V 0 − 1/2 − 8α0/(3π))e

l. Therefore at the disorder con-
trolled critical pointα is a relevant perturbation, andα shifts
the SM-CDM phase boundary to a larger value of∆V =
1/2 + 8α/(3π). Along this phase boundary the correlation
length diverges with an exponentν = 1, but the dynamic
exponent varies continuously asz = 3/2 + 2α/π. Notice
that CDM phase is a strongly interacting state of matter, and

this was not addressed in Ref. 9–11. In the SM phase, the
Coulomb interaction initially grows before curling back to-
wards zero in a logarithmic manner, and the initial growth of
α is controlled by the bare strength of∆V . This unusual flow
will be reflected as a non-monotonic temperature dependence
of the inelastic scattering rate. The critical behavior at the SM-
CDM phase boundary should be contrasted with its(2 + 1)-
dimensional counterpart. In(2 + 1)-dimensions, there is no
perturbative loop correction tog, and the phase boundary is a
line of critical points withz = 1[15].

Now we consider the role ofm andB. Compared to the
SM phase, we expect TI and BI to be stable up to a larger
disorder,∆V (m) > (1/2 + 8α/(3π)). Due to the irrelevant
nature ofB, we expect it to cause non-universal shift of the
phase boundaries, leaving the critical properties unchanged.
For finitem andB, the RG equations are given by

dv

dl
= v

[

z − 1 +
2α

3π
√

1 + (m+B)2
− ∆V

1 + (m+B)2

]

(6)

dm

dl
= m

[

1 +
α

3π
√

1 + (m+B)2
− ∆V

1 + (m+B)2

]

+B

[

α

π
√

1 + (m+ B)2
− ∆V

1 + (m+B)2

]

(7)

dB

dl
= −B

[

1 +
α

3π
√

1 + (m+B)2

]

+m
α

3π
√

1 + (m+B)2
(8)

dα

dl
= α

[

∆V

1 + (m+B)2
− 2α

3π
√

1 + (m+B)2
− 2α

3π

1 + 3
2 (m

2 +B2) +mB

[1 + (m+B)2]
5

2

]

(9)

d∆V

dl
= ∆V

[

−1 +
2∆V

1 + (m+B)2
− 4α

3π
√

1 + (m+B)2
− 4α

3π

1 + 3
2 (m

2 +B2) +mB

[1 + (m+B)2]
5

2

]

(10)

In Fig. 2(a) we show the phase diagram forB = α = 0 and
in Fig. 2(b) we show the phase diagram forα = 0 and a bare
valueB0 = 0.5. When disorder is irrelevant, there is a di-
rect phase transition between TI and BI phases along the line
ab. In this region,∆V (l) ∼ ∆V e

−l, andB(l) ∼ B0e
−l,

andα(l) ∼ α0(1 + 4α0l/(3π))
−1, and only relevant vari-

able is fermion massm. In this region forα0 = 0, we find
(m(l) − ∆V (l)B(l)/3) ≈ el(m0 − ∆V 0B0/3). Therefore
(m − ∆VB/3) behaves as the effective mass, and for finite
B, the TI-BI phase boundary shifts tom = B∆V /3. This
can be seen by comparing the segmentab in Fig. 2(a) and
Fig. 2(b). The Coulomb interaction causes additional shift
to m = B∆V /3 + Bα/(2π). Therefore in the weak disor-
der regime, it is possible to induce a transition between two
insulating phases by tuning the strength of the disorder. As
∆V andα are respectively irrelevant and marginally irrele-
vant couplings,z asymptotically approaches unity, and the
universality class is described by the massless Dirac fermions.
There are logarithmic corrections to the scaling properties due

to marginally irrelevant nature ofα and it is captured through
the scale dependentz, and also by a factorel(α0/α)

1/4 for
the scaling dimension ofm. The pointb is a multi-critical
point at which the massless SM phase undergoes a transition
either into CDM or one of the two insulating phases. When
disorder exceeds the critical strength corresponding tob, there
is no longer a direct transition between two insulating phases.
Along the TI-CDM and BI-CDM phase-boundaries respec-
tively denoted bybd andbe, z is non-universal, but the mean
free path still has the exponent unity. The dashed linebc sepa-
rates the disorder controlled CDM phase into two regions with
negative and positive effective masses, which do not have any
physical distinction. For a special case of chiral symmetric
disorder andB = 0, the chiral symmetric diffusive metallic
phase alongbc becomes distinct from the rest of the CDM
phase. In that case, due to the presence of additional diffu-
sive modes, the weak anti-localization correction for a chiral
symmetric CDM becomes two times larger than that of the
chiral symmetry breaking CDM [10]. However forB 6= 0, or
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FIG. 2: The phase diagrams in them−∆V plane for (a)B0 = α0 =

0, (b)B0 = 0.5, α = 0. The direct transition between TI and BI
alongab is governed by massless Dirac fermions. When disorder ex-
ceeds a critical strength, the insulating phases are separated by CDM,
and transitions alongbd, andbe have non-universal critical proper-
ties. The dashed linebc describes a cross-over between two regions
of CDM with negative and positive effective masses.

generic disorder such distinction is lost andbc corresponds to
a cross-over line. The Coulomb interaction shifts the pointb
to higher strength of disorder, and leads to additional non-
universal shifts of the phase boundaries, and non-universal
change ofz.

In the weak disorder regime, the transition between TI and
BI will be accompanied by interesting critical properties of
massless Dirac fermions [14]. Since(3 + 1)-dimensions is
marginal, some care is necessary to disentangle slow loga-
rithmic corrections in many physical quantities. For example,
the specific heatCV and compressibilityκ, instead of being
proportional toT 3/v3 will be proportional to(T 3/v3){1 +
4α0/(3π) log(vΛ/T )}−3/2. Similar logarithmic corrections
in (2 + 1)-dimensions have been discussed in Ref. [16]. In
the high temperature limit, the diamagnetic susceptibility in-
stead of being a constant has logarithmic enhancementχ ≈
−e2v/(24π2) log(vΛ/T ). A similar logarithmic correction
proportional tolog(B) appears in the strong field limit. How-
ever a finite particle-hole symmetry breaking termA andµ
will lead to conventional diffusive Fermi liquid behavior in
the low temperature limit specified byµ/T ≫ 1. Therefore
the critical behavior will be limited toT ≫ µ. However by
a careful adjustment ofµ, the critical properties can be found
even in the lowT limit. The critical behavior will be found
even for the massive fermions provided thatT > m. In the

critical regime the inelastic scattering rate∼ α2T is larger
than elastic scattering rate, and dominates the transport in the
collision dominated regimeω ≪ α2T . A quantum Boltzmann
equation leads to the conductivity

σ(ω, T ) =
30.46T

α log(1/α)

[

1−
(

iω

T

)

26.67

α2 log(1/α)

]−1

(11)

The disorder induced initial growth ofα will lead to non-
monotonic temperature dependence of the inelastic scattering
rate and the conductivity.

Our results are obtained for inversion symmetric systems,
and do not apply for Hg1−xCdxTe due to broken inversion
symmetry and the presence of additional gapless quadratic
band at theΓ point. In the presence of inversion symmetry
breaking Dirac mass such asγ0γ5 andγ0γj , even for a clean
system one can find a metallic phase, if the inversion symme-
try breaking mass exceedsm. In the supplementary material
we have considered the effects of inversion symmetry break-
ing disorder, and the generic phase diagrams shown in Fig.2
remain qualitatively unchanged [14]. In the strong disorder
limit we have not accounted for the localization corrections
for low energy diffusive modes, and such corrections can play
important role in determining the more accurate scaling be-
havior in the strong disorder limit. The localization correc-
tions are expected to drive a further phase transition from the
CDM phase to disorder controlled insulating phase. The nu-
merical work in Ref. 11 and Ref. 17 for noninteracting prob-
lem in the strong disorder limit have showed the existence of
a disorder induced topological Anderson insulator phase. Our
work suggests that, akin to the conventional metal-insulator
transition problem [18], the interaction effects become strong
in the diffusive metallic phase. The effects of strong inter-
action on metal-insulator transition and topological Anderson
insulator will be addressed in a future publication.

P. G. was supported by NSF Grant No. DMR-1006985. S.
C. was supported by NSF under the Grant DMR-1004520.

[1] R. Dornhaus, G. Nimtz, and B. Schlicht,Narrow-Gap Semi-
counductors, (Springer-Verlag, 1983).

[2] L. Fu, and C. L. Kane, Phys. Rev. B76, 045302 (2007)
[3] X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B78,

195424 (2008)
[4] M. Z. Hasan, and C. L. Kane, Rev.Mod.Phys.82, 3045 (2010).
[5] X. L. Qi, and S. C. Zhang, arXiv:1008.2026v1
[6] H. Zhanget al., Nat. Phys.,5, 438 (2009).
[7] C. X. Liu et al., arXiv:1005.1682v1
[8] A. A. Abrikosov and S. D. Beneslavskii, Sov. Phys. JETP32,

699 (1971).
[9] E. Fradkin, Phys. Rev. B33, 3263 (1986).

[10] R. Shindou and S. Murakami, Phys. Rev. B79, 045321 (2009).
[11] H. M. Guoet al., Phys. Rev. Lett.105, 216601 (2010).
[12] A. P. Schnyderet al., Phys. Rev. B78, 195125 (2008).
[13] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett.

105, 036803 (2010).
[14] EPAPS Document No. X-XXX-XXXXXX-XXX-XXXXXX



5

[15] Matthew S. Foster and Igor L. Aleiner, Phys. Rev. B77, 195413
(2008).

[16] D. E. Sheehy and J. Schmalian, Phys. Rev. Lett.99, 226808
(2007).

[17] M. B. Hastings, and T. A. Loring, arxiv:1012.1019.
[18] D. Belitz, and T. R. Kirkpatrick, Rev. Mod. Phys.66, 261

(1994).


