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Four-component massive and massless Dirac fermions inrd#sempce of long range Coulomb interaction
and chemical potential disorder exhibit striking fermimguantum criticality. For an odd number of flavors of
Dirac fermions, the sign of the Dirac mass distinguishestdpelogical and the trivial band insulator phases,
and the gapless semi-metallic phase corresponds to théuguamitical point that separates the two. Up to
a critical strength of disorder, the semi-metallic phaseai@s stable, and the universality class of the direct
phase transition between two insulating phases is unckda®gyond the critical strength of disorder the semi-
metallic phase undergoes a phase transition into a disomaerolled diffusive metallic phase, and there is no
longer a direct phase transition between the two types olatisg phases. Our results are also applicable to
even number of flavors of Dirac fermions, and the band ingersiansition in various non-topological narrow
gap semiconductors.

The low energy, long wavelength quasi-particle spectrum othe combined effects of interaction and disorder on the bulk
various narrow gap semiconductors is well approximated byermions has not been considered before. Motivated by this
noninteracting(3 + 1)-dimensional massive Dirac fermions and possible future experiments in which novel QCPs can be
and by adjusting the chemical composition, or by applyingexplored, we analyze the problem of both massive and mass-
pressure, the sign of the Dirac mass can be changed at a bariéss Dirac fermions in the presence of Coulomb interaction
inversion transition (BIT). At BIT the system becomes semi-and random chemical potential type disorder using a pertur-
metallic (SM) and is described by massless Dirac fermionsbative renormalization group (RG) analysis. Remarkably, t
The SM phase is an interesting examplezof 1 fermionic  vanishing density of states at the Dirac points renders auch
guantum critical point (QCP). In the massless phase, the cortalculation reliable in comparison to the corresponding-no
duction and valence bands cross at a discrete number of dielativistic problem.
abolic points inside the Brillouin zone and depending on the For orientation we first consider the disorder free nonin-
number of inequivalent diabolic points we obtain multipke fl teracting Dirac fermion action. For simplicity we consider
vors of Dirac fermions. The narrow gap semiconductors suclonly one species of Dirac fermion. Assuming inversion (par-
as Ph_,Sn,Te (four flavors),Bi;_,Sb, and Hg__,Cd,Te ity) and time reversal symmetry and using a spinor basis
(each with single flavor) are well known examples, which fory)” = (ci +,cy4.y,c— +,c|), Wherecy.  respectively cor-
special values of;, become massless [1]. For odd numberrespond to the annihilation operators for parity even ardl od
of Dirac fermion flavors, the QCP describes the phase transitates, with spin projectios, we can write the following Eu-
tion between a topological insulator (TI) and an ordinamyda clidean action
insulator (BI) EZ ]. The recent experimental observatién
Tl phase in different narrow gap semiconductors have sdurre 5, = /d4gm¢7 [70(80 — A7) +ivy;0; + m — BOF | 4. (1)
our interest in thé3 + 1)-dimensional Dirac materials|[4, 5].

The low energy spectrum of materials liB& . Sb,., BisTes,
BisSes, where Tl phase has been observed are all describ
in terms of a single flavor massive Dirac fermiEhEb, 7].

The latin index;j is a spatial index andh ~ 1/a is the ul-
et?iaviolet cutoff, whereu is the lattice spacing. The parameter
v is the Fermi velocity andn is the Dirac mass. The anti-
The stability of the disorder free SM phase in the presenceommuting Euclideary matrices satisfy{~y,, 7.} = 2.,
of long range Coulomb interaction and the noninteracting SMand+ = fv,. The four-component spinor structure arises
phase in the presence of random chemical potential disordérom the two-sublattice crystallographic structure araltthio
were respectively addressed in Refs. [8] a [9]. Recentlgpin components. We have also incorporated two higher gra-
the noninteracting, disorderégi+-1)-dimensional Tl has been dient terms involvingd and B. The above action is invariant
considered in Rest__L’lmll]. For the noninteracting disoed  with respect to the parityX) and time reversalf) transfor-
problem a symmetry based ten-fold classification of Tl arnd sumations: Py P! = v, TYT ! = —vy1y31. ForA = 0,
perconductors has been described in Ref. [12], and thd-stabihe action is also invariant under charge conjugation igart
ity of the two dimensional surface states has been discassed hole) transformation(): C1)C~! = —v21. The particle-hole
the basis of this symmetry classification. The nonintengcti symmetry breaking term does not affect the topological prop
Tl in the presence of generic time reversal symmetric disord erties, and can be off-set by adjusting of the chemical poten
belongs to the symplecti&II class. In general such classifi- tial, and henceforth we will set = 0.
cation does not hold in the presence of interaction. The sta- The fermion massn and the higher gradient term Propor-
bility of the two dimensional disordered and interacting-su tional to B break theU (1) chiral symmetry of the massless
face states of a TI has been addressed in Réf. [13]. Howevebirac fermions defined by — ¢i®/2¥54), o) — 4pet(®/2)7s,



wherevys = 1v0717273- The Tl and Bl phases are respectively Bl will be unchanged up to a critical strength of the disorder
defined by the conditionsiB < 0 andmB > 0 and are sep- This should be contrasted to the two dimensional problem,
arated by a finite chiral angl® = =. This is reflected in the where the chemical potential disorder is a marginally raév
guantized magneto-electric coefficiemt®nd0, respectively  perturbation and invalidates the lowest order Born appnaxi

for Tl and BI. At the critical pointn = 0, the dynamic expo- tion result ES].
nentz = 1, and in the RG sense the higher derivative terms

can be ignored. X Y
The Dirac structure of the Hamiltonian allows various types f[ fl/// //// /// /2«// //////;
of disorder. The constraint of time reversal invariancevad 15 11 t[ // // // //%//4///',/}7///«2 1
the following six bilinearszyo1, Y1, ¥y0y5¢ andiyoy;¢ : ‘[/ //// /////2«///}//479'//{;'

(j = 1,2, 3). The bilinears)vyqv, 11 respectively correspond r{,//// //// //2/;';{:’7

to random chemical potential and random mass scattering. 310 [(////4///’////,‘///_;’::—12\ ]

The physical description of other four bilinears dependthen f’/ /&f%/,’f;-iig\\\\\\ \ ]

crystallographic details. We shall concentrate on the samd ///}/—-/\*TT‘\\:\\\\ \\\ ) I

chemical potential as the dominant elastic scatteringge®c 0.5 5 \K“\\ Vi ) // //// 8
] . SN 7%

and addSp = [ d*2V (x)y01 to the actionSy. The random ‘\\\\\\\\ \ \/ }/////?/ 77

potentialV (x) is a Gaussian white noise distribution specified & i U / ,]/, ///},//////ﬁé/ﬁﬁ

by the disorder averagéV (x)V (x))) = Ay 63(x—x ). The 0.0 =T T T T

detailed analysis for generic time reversal symmetricrdiso 00 05 10 15 2C

is provided in the supplementary mater[14]. a

Since typicallyv/c ~ 1072 — 1073 (c is the velocity of (@)
light), the Coulomb interaction is instantaneous. Itsruith 20

is characterized by the the dimensionless parametes
e?/(4mev) ~ 2.2/e — 22/e, wheree is the static dielectric
constant of the material. We perform disorder average using
the replica method, which we use merely as a book-keeping
device for perturbative RG calculations. The replicated Eu
clidean action after disorder averaging of the partitioncfu

tion is 0.0 ‘
. W [- ‘0.0 0.5 1.0 15 2.C
S= /d x{% {10(80 + igpa) + 17,05 +m — BI3 } b, @
(b)
1 A ;o
+§(6J¢a)2:| - TV /d3$d$0d$0 (wa%wa) (z,20)
' FIG. 1: (2)The RG flow and (b) the phase diagram indhe Ay

% (¢v70¢) ./ (2)  plane for massless Dirac fermions with = B = 0. The CDM
o phase represents a disorder induced massless, compeeatfidive

where g = V4mva, anda, b are replica indices. We Mmetallic state with finite density of states and scatteratg at zero
have used the abbreviated notati((lzj_za'ywa)(m o) = energy.

Ya(r, 20)v0%a (2, 20). We have introduced an auxiliary
scalar potentiap,, to decouple the four-fermion Coulomb in-
teraction term. Unlike two dimensions, the Coulomb interac
tion manifests itself agd; p,)?, which is analytic in momen-
tum andg can certainly receive loop corrections. The action

Consider first the massless Dirac fermions with= 0.
From a momentum shell renormalization group (RG) calcula-
tionto O(a?), O(A}), andO(Ay «), we find

S preserves all three discrete symmetres7 andC. For v = <z —1-Ay + 2—a> , 3)
RG calculations we replace the couplings by the correspond- di 3w
ing dimensionless couplings — m/(vA), B — BA/v and do _ (A _ 4_0) @)
Ay — Ay A/(27%0?%). The details of the RG calculation are dl 3r )’
provided in the supplementary mater[14]. dAy Sa

The density of states for massless and massive problems “a Av (_1 +24v - 37) )

are, respectivelyp(E) x E? andp(E) « |E|VE? —m2.

Since the the density of states vanishes at zero energy, tligy keepingv fixed we obtain a scale dependent dynamic
scattering rate ! (E) calculated from lowest order Born ap- exponentz(l) = 1 + Ay (I) — 2a(l)/3w. There are two
proximation also vanishes at zero energy. At the tree levelfixed points: (i) attractive, noninteracting, clean fixednio

B andAy are irrelevant couplings, andlandm are respec- Ay = a = 0, z = 1; and (ii)noninteracting finite disorder
tively marginal and relevant couplings. Therefore we antic critical point: Ay = 1/2, « = 0, z = 3/2. For the nonin-
ipate that the universality class of the QCP between Tl anderacting disordered problem, the fixed point (ii) contitbie
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transition between the two phases where disorder is respethis was not addressed in Ref[9-11. In the SM phase, the
tively irrelevant (SM) and relevant. In the phase wherediso Coulomb interaction initially grows before curling back to
der is relevant, both the zero energy density of states,l@d t wards zero in a logarithmic manner, and the initial growth of
zero energy scattering rates are finite. Therefore thigdéso « is controlled by the bare strength &f;,. This unusual flow
induced phase will be termed a compressible diffusive metalill be reflected as a non-monotonic temperature dependence
(CDM). The RG flow and the associated phase diagram arefthe inelastic scattering rate. The critical behaviohat$M-
respectively shown in Fif. 1(a) and Hig. 4(b). CDM phase boundary should be contrasted with{3ts- 1)-

By linearizing the flow equations in the vicinity of the fixed dimensional counterpart. 12 + 1)-dimensions, there is no
point (i), we finda (1) ~ ape'/?, andAy —1/2—8a/(37) ~  perturbative loop correction tg and the phase boundary is a
(Ayo — 1/2 — 8ag/(37))e!. Therefore at the disorder con- line of critical points withz = 1[15].
trolled critical pointa is a relevant perturbation, andshifts Now we consider the role o and B. Compared to the
the SM-CDM phase boundary to a larger valueof = SM phase, we expect Tl and BI to be stable up to a larger
1/2 + 8a/(37). Along this phase boundary the correlation disorder,Ay (m) > (1/2 + 8a/(3w)). Due to the irrelevant
length diverges with an exponent = 1, but the dynamic nature of B, we expect it to cause non-universal shift of the
exponent varies continuously as= 3/2 + 2«a/w. Notice  phase boundaries, leaving the critical properties unoégng
that CDM phase is a strongly interacting state of matter, andror finitem and B, the RG equations are given by

dv 20 Ay

— =v|z—1+ — 6
dl [ 3ny/1+ (m+ B2 1+ (m+ B)? (6)
dm o Ay a Ay

—=m |1+ - + B _ 7
di 3ry/1+ (m+B)2 1+ (m+B) /it (mtB? 1+ (m+ By (7)
TP - +m . (®)
dl 3m\/1+ (m+ B)? 3m\/1+ (m+ B)?

da Ay 20 2a 14 3(m?* + B?) + mB ©
ax _ _ _

dl I+ (m+B)? 37x,/14+(m+B)?2 3« [1+(m+3)2]%

dA 2A 4 4ol + 2(m? + B2 B

= Av |1+ s - ol t B m (10)
dl 1+(m+B) 37T\/1+(m+B)2 3T [1+(m+B)2]7

In Fig.[2(a) we show the phase diagram fr= o = 0 and  to marginally irrelevant nature ef and it is captured through

in Fig.[2(b) we show the phase diagram foe= 0 and a bare  the scale dependent and also by a factot! (a/a)'/* for
value By = 0.5. When disorder is irrelevant, there is a di- the scaling dimension af.. The pointb is a multi-critical

rect phase transition between Tl and Bl phases along the lingoint at which the massless SM phase undergoes a transition
ab. In this region, Ay (1) ~ Aye™!, andB(l) ~ Bge !, either into CDM or one of the two insulating phases. When
anda(l) ~ aop(l + 4apl/(37))~1, and only relevant vari- disorder exceeds the critical strength correspondingtteere
able is fermion mass:. In this region foray = 0, we find s no longer a direct transition between two insulating plsas
(m(l) — Ay (1)B()/3) ~ €e'(mo — AvoBy/3). Therefore Along the TI-CDM and BI-CDM phase-boundaries respec-
(m — Ay B/3) behaves as the effective mass, and for finitetively denoted byd andbe, z is non-universal, but the mean
B, the TI-Bl phase boundary shifts ia = BAy /3. This  free path still has the exponent unity. The dashediirgepa-

can be seen by comparing the segmehin Fig.[2(a) and rates the disorder controlled CDM phase into two regionk wit
Fig.[2(b). The Coulomb interaction causes additional shifinegative and positive effective masses, which do not haye an
tom = BAy /3 + Ba/(27). Therefore in the weak disor- physical distinction. For a special case of chiral symmoetri
der regime, it is possible to induce a transition between twalisorder andB = 0, the chiral symmetric diffusive metallic
insulating phases by tuning the strength of the disorder. Aphase alongc becomes distinct from the rest of the CDM
Ay anda are respectively irrelevant and marginally irrele- phase. In that case, due to the presence of additional diffu-
vant couplings,z asymptotically approaches unity, and the sive modes, the weak anti-localization correction for aaihi
universality class is described by the massless Dirac tarsii  symmetric CDM becomes two times larger than that of the
There are logarithmic corrections to the scaling propedige  chiral symmetry breaking CDI\,EO]. However f@t #£ 0, or
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1L.0—qg— T —e critical regime the inelastic scattering rate o?T is larger

0.8l | ] than elastic scattering rate, and dominates the trangpurei
\ CDM collision dominated regime < «*T'. A quantum Boltzmann

50-6’ ~__ib ] equation leads to the conductivity
04 &) 30.46T : 2 -
7 ] ) = . _[iw 6.67 (11)
e ow, alog(l/a) T ) a?log(l/a)
0.0 ‘ a.
-1.0 -05 0.0 0.5 1.C The disorder induced initial growth af will lead to non-
m monotonic temperature dependence of the inelastic sicegter

(@) rate and the conductivity.

Our results are obtained for inversion symmetric systems,
and do not apply for Hg ,Cd, Te due to broken inversion
symmetry and the presence of additional gapless quadratic
band at the” point. In the presence of inversion symmetry
breaking Dirac mass such agys and~yv;, even for a clean
system one can find a metallic phase, if the inversion symme-
try breaking mass exceeds. In the supplementary material
we have considered the effects of inversion symmetry break-

1.C ing disorder, and the generic phase diagrams shown in Fig.2
remain qualitatively unchangeE[M]. In the strong disorde
(b) limit we have not accounted for the localization correcsion
for low energy diffusive modes, and such corrections can pla
FIG. 2: The phase diagrams in the— Ay plane for (a3, = ap —  important role in determining the more accurate scaling be-

0, (0)By = 0.5, « = 0. The direct transition between Tl and Bl havior in the strong disorder limit. The localization carre
alongab is governed by massless Dirac fermions. When disorder extions are expected to drive a further phase transition fitwen t
ceeds a critical strength, the insulating phases are seddig CDM,  CDM phase to disorder controlled insulating phase. The nu-
and transitions alongd, andbe have non-universal critical proper- merical work in Refljl and R7 for noninteracting prob-
ties. The dashed link: describes a cross-over between two regionsIem in the strong disorder limit Have showed the existence of
of CDM with negative and positive effective masses. . . 9 - .

a disorder induced topological Anderson insulator phase. O
work suggests that, akin to the conventional metal-insulat
generic disorder such distinction is lost arccorresponds to _transmo_n preblerr@S], the interaction effects becormergj

in the diffusive metallic phase. The effects of strong inter

a cross-over line. The Coulomb interaction shifts the pbint . Linsul C d logical
to higher strength of disorder, and leads to additional non?cucin on mI?La-Indsc;J atort(;ensn]lcon an tcz)?o ogica
universal shifts of the phase boundaries, and non-uniwers§'Suiator will be addressed in a future publication.
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change ot.
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