
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Probing Anisotropic Superfluidity in Atomic Fermi Gases
with Rashba Spin-Orbit Coupling

Hui Hu, Lei Jiang, Xia-Ji Liu, and Han Pu
Phys. Rev. Lett. 107, 195304 — Published  4 November 2011

DOI: 10.1103/PhysRevLett.107.195304

http://dx.doi.org/10.1103/PhysRevLett.107.195304


LE13235

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Probing anisotropic superfluidity in atomic Fermi gases with Rashba spin-orbit

coupling

Hui Hu1, Lei Jiang2, Xia-Ji Liu1, and Han Pu2

1ARC Centre of Excellence for Quantum-Atom Optics,

Centre for Atom Optics and Ultrafast Spectroscopy,

Swinburne University of Technology, Melbourne 3122, Australia
2Department of Physics and Astronomy, and Rice Quantum Institute, Rice University, Houston, TX 77251, USA

Motivated by the prospect of realizing a Fermi gas with a synthetic non-Abelian gauge field, we
investigate theoretically a strongly interacting Fermi gas in the presence of a Rashba spin-orbit
coupling. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with
mixed singlet and triplet components emerge, leading to an anisotropic superfluid. We calculate
the relevant physical quantities, such as the momentum distribution, the single-particle spectral
function and the spin structure factor, that characterize the system.
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Owing to the unprecedented experimental controlla-
bility, ultracold atoms have been proven to be an ideal
table-top system to study certain long-sought, challeng-
ing many-body problems. A well-known example is the
crossover from a Bose-Einstein condensation (BEC) to
a Bardeen-Cooper-Schrieffer (BCS) superfluid in an ul-
tracold atomic Fermi gas [1]. Here we study a strongly
interacting Fermi gas in the presence of a synthetic non-
Abelian gauge field, as motivated by the recent demon-
stration of such field in bosonic 87Rb atoms [2] and the
prospect of its realization in fermionic 40K atoms [3]. We
focus on the Rashba spin-orbit (SO) interaction and ex-
plore its impact on the unitary Fermi gas.

It was shown in 2001 by Gor’kov and Rashba [4] that
superconducting 2D metals with weak SO coupling fea-
tures a mixed spin singlet-triplet pairing field, and its
spin magnetic susceptibility can be dramatically affected
by the SO interaction. By applying an additional large
Zeeman magnetic field, it was proposed by Zhang et al.

[5] and Sato et al. [6] that a topological phase with
gapless edge states and non-Abelian Majorana fermionic
quasiparticles may form. More recently, Vyasanakere and
Shenoy identified an interesting bound state by solving
the two-body problem [7], referred to as rashbons. By
increasing the strength of SO coupling, a BCS superfluid
can therefore evolve into a BEC of rashbons [8].

In this Letter, we investigate the properties of Rashba
SO coupled Fermi gases. We identify clearly the two-
body bound state from the gaussian fluctuations of the
pairing field and show that they possess anistropic ef-
fective mass. This allows us to estimate the superfluid
transition temperature in the molecular limit. We calcu-
late various physical quantities, such as the momentum
distribution, the single-particle spectral function and the
spin structure factor, that are both experimentally rel-
evant and of fundamental importance in characterizing
the system. In addition, we show that the presence of
the trap as in any cold atom experiment would not affect
the system in any qualitative way. Therefore the salient

features of SO coupled fermions can indeed be observed
in practice.

The model — Let us start by formulating the BEC-
BCS crossover with a Rashba SO coupling Hso =
λ(k̂y σ̂x − k̂xσ̂y), whose Hamiltonian is given by,

H =

ˆ

dr
{

ψ+ [ξk +Hso]ψ + U0ψ
+
↑ ψ

+
↓ ψ↓ψ↑

}

, (1)

where ξk = ~
2k̂2/(2m) − µ, and ψ(r) = [ψ↑(r), ψ↓(r)]

T

denotes collectively the fermionic field operators. The
contact s-wave interaction (U0 < 0) occurs between
un-like spins. Here we give a brief description of the
theoretical technique we used, the functional path inte-
gral method [9]. A more detailed account will be pre-
sented elsewhere [10]. We start from the partition func-
tion Z =

´

D[ψ, ψ̄] exp
{

−S
[

ψ (r, τ) , ψ̄ (r, τ)
]}

, where

S[ψ, ψ̄] =
´ β

0
dτ [
´

dr
∑

σ ψ̄σ (r) ∂τψσ (r)] +H(ψ, ψ̄), β =
1/(kBT ), and H(ψ, ψ̄) is obtained by replacing the
field operators ψ+ and ψ with the Grassmann vari-
ables ψ̄ and ψ, respectively. The interaction term
can be decoupled by using the standard Hubbard-
Stratonovich transformation with the introduction of a
pairing field ∆(r, τ). After integrating out the fermionic
fields, we have Z =

´

D[∆, ∆̄] exp
{

−Seff

[

∆, ∆̄
]}

,

where Seff =
´ β

0
dτ
´

dr
{

− |∆(r,τ)|2

U0

}

− 1
2Trln

[

−G−1
]

+

β
∑

k ξk, with G being the single-particle Green func-
tion. To proceed, we restrict ourselves to the gaus-
sian fluctuation and expand ∆(r, τ) = ∆0 + δ∆(r, τ).
The effective action is then decomposed accordingly
Seff = S0 + ∆S, where, in the momentum space,
the fluctuation action takes the form [k ≡ (k, iωm)

and q ≡ (q, iνn)]: ∆S =
∑

q,iνn

[

− 1
U0

δ∆(q)δ∆̄(q)
]

+
1
2

(

1
2

)

Trσ
∑

k,q [G0 (k)Σ (q)G0 (k − q) Σ (−q)], with

Σ (q) =

[

0 iδ∆(q) σ̂y
−iδ∆̄ (−q) σ̂y 0

]

. (2)

Two-body bound state — Let us consider first the
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normal state with ∆0 = 0, in which case the Green
function reduces to its non-interacting form as G0(k) =
Diag{ĝ0(k),−ĝ0(−k)} with ĝ0(k) = [iωm−ξk−λ(kyσ̂x−
kxσ̂y)]

−1, leading to two helicity branches in the single-
particle spectrum, Ek,α = ξk + αλk⊥, where k⊥ ≡
(k2x + k2y)

1/2 and α = ±1. The fluctuation action is given

by ∆S =
∑

q

[

−Γ−1 (q)
]

δ∆(q)δ∆̄(q), where Γ−1(q) is the
inverse vertex function which, at q = 0, takes the form

Γ−1 (ω) =
m

4π~2as
−

1

V

∑

k

[

∑

α=±

1/2− f (Ek,α)

ω + i0+ − 2Ek,α
+

1

2ǫk

]

,

where f (x) = 1/(ex/kBT + 1) is the Fermi distribution
function and we have renormalized the bare interaction
U0 by the s-wave scattering length, 1/U0 = m/(4π~2as)−
V −1

∑

k 1/(2ǫk), with V being the quantization volume.

Figure 1: (Color online) (a) Rashbons as evidenced by the
two-body phase shift of Γ−1 (0, ω) at three different scatter-
ing lengths. The arrows indicate the position of binding en-
ergy. (b) Effective mass of rashbons [γ = M⊥/(2m)] in the
strong SO limit. The inset shows the bound state energy as
a function of the scattering length.

The vertex function is simply the Green function of
the fermion pair. A bound state can therefore be exam-
ined clearly by calculating the phase shift [11] δ(q, ω) =
− Im ln[−Γ−1(q, iνn → ω + i0+)]. For a true boson, the
phase shift is given by δB(q, ω) = πΘ(ω−ǫBq +µB), where

ǫBq and µB are the bosonic dispersion and chemical po-
tential, respectively, and Θ(x) is the step function. In
Fig. 1(a), we plot the two-body part of the phase shift
at q = 0, obtained by discarding Fermi functions. The
phase shift jumps from 0 to π at a critical frequency, sig-
naling the occurrence of a bound state. By recalling that
the bosonic chemical potential is given by µB = 2µ−EB,
whereEB is the bound state energy, the critical frequency
(ω+2µ)c at q = 0 gives exactly EB. Using the fact that
the critical frequency corresponds to the position where
Re[Γ−1] changes sign, we have

m

4π~2as
−

1

2V

∑

k;α=±

[

1

EB − 2Ek,α
+

1

ǫk

]

= 0 . (3)

The inset in Fig. 1(b) shows the bound state energy as
a function of the SO coupling strength. At the unitar-
ity limit, the bound state energy is universally given by
EB ≈ −1.439229mλ2/~2. The size of the bound state a
is therefore at the order of ~2/(mλ). The bound states
are only well defined once a ≪ k−1

F or λkF ≫ ǫF . Thus,
we anticipate that the system will cross over to a gas of
rashbons at λkF /ǫF ∼ 1.

In the limit of a large SO coupling, the well-defined
two-body bound state should have a bosonic dispersion
ǫBq = ~

2q2⊥/(2M⊥) + ~
2q2z/(2Mz) and weakly interact

with each other repulsively. Because of the anisotropic
fermionic dispersion Ek,± = ξk ±λk⊥, the effective mass
of rashbons becomes anisotropic. While Mz = 2m is not
affected by the Rashba coupling, M⊥ may get strongly
renormalized. As the jump of the phase shift at nonzero
q which occurs at EB + ǫBq , we can numerically deter-
mine M⊥. Fig. 1(b) displays γ = M⊥/(2m). At uni-
tarity, we find γ ≃ 1.2. When the system becomes an
ensemble of weakly interacting rashbons, the heavy mass
M⊥ causes a decrease in the condensation temperature
so that TBEC = γ−2/3TBEC,0, where TBEC,0 ≃ 0.218TF is
the BEC temperature without the SO coupling.

Condensation of rashbons — Let us now turn to the
condensed phase characterized by a nonzero order pa-
rameter ∆0 6= 0. At the mean-field saddle-point level,
the single-particle Green function takes the form,

G−1
0 =

[

iωm − ξk −Hso i∆0σ̂y
−i∆0σ̂y iωm + ξk −H∗

so

]

. (4)

The inversion of the above matrix can be worked
out explicitly, leading to two single-particle Bogoli-
ubov dispersions whose degeneracy is lifted by the

SO interaction, Ek,± =

√

(ξk ± λk⊥)
2
+∆2

0, and the

normal and anomalous Green functions from which
we can immediately obtain the momentum distribu-
tion n (k) = 1 −

∑

α [1/2− f (Ek,α)] γk,α and the
single-particle spectral function A↑(k, ω) = A↓(k, ω) =
∑

α [(1 + γk,α) δ (ω − Ek,α) + (1− γk,α) δ (ω + Ek,α)] /4,
where γk,± = (ξk ± λk⊥) /Ek,±. The chemical potential
and the order parameter are to be determined by the
number and the gap equations, n =

∑

k n(k) and
∆0 = −U0∆0

∑

α[1/2 − f (Ek,α)]/(2Ek,α), respectively.
Fig. 2(a) displays the chemical potential µ and order
parameter as functions of the SO coupling strength for a
unitary Fermi gas. The increase of the SO strength leads
to a deeper bound state. As a consequence, in analogy
with the BEC-BCS crossover, the order parameter and
critical transition temperature are greatly enhanced
at λkF ∼ ǫF . In the large SO coupling limit, we
have µ = (µB + EB)/2, where µB is positive due to
the repulsion between rashbons and decreases with
increasing coupling as shown in the inset of Fig. 2(a).
By assuming an s-wave repulsion with scattering length
aB, where µB ≃ (n/2)4π~2aB/M , we estimate within
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mean-field that in the unitarity limit, aB ≃ 3~2/(mλ),
comparable to the size of rashbons.

(a) (b) c)(

μ

E /2B

Figure 2: (a) Mean-field order parameter as a function of the
SO coupling for a homogeneous unitary Fermi gas at zero
temperature. The inset shows the chemical potential and the
half of bound state energy, both in units of ǫF . (b) Momentum
distribution and (c) single-particle spectral function for θ =
π/2 at λkF /ǫF = 2. Here θ is the angle between k and the
z-axis. The width of the curves in (c) represents the weight
factor (1±γk,±)/4 for each of the four Bogoliubov excitations.

Figure 2(b) and (c) illustrate the momentum distri-
bution and the single-particle spectral function, respec-
tively. These quantities exhibit anisotropic distribution
in momentum space due to the SO coupling and can be
readily measured in experiment.
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Figure 3: (Color online) Linear contour plot for the triple
pairing correlation | 〈ψk↑ψ−k↑〉 | between like spins (a) and the
singlet pairing correlation | 〈ψk↑ψ−k↓〉 | between un-like spins
(b) for a homogeneous unitary Fermi gas at zero temperature
with λkF /ǫF = 2. The zero-momentum dynamic and static
spin structure factor are shown in (c) and (d), respectively.

Another important consequence of the SO cou-
pling is that the pairing field contains both a sin-
glet and a triplet component [4, 8]. For the sys-
tem under study, it is straightforward to show that
the triplet and singlet pairing fields are given by
〈ψk↑ψ−k↑〉 = −i∆0e

−iϕk

∑

α α[1/2 − f (Ek,α)]/(2Ek,α)
and 〈ψk↑ψ−k↓〉 = ∆0

∑

α[1/2 − f (Ek,α)]/(2Ek,α), re-
spectively, where e−iϕk ≡ (kx − iky)/k⊥. The magni-
tude of the pairing fields are shown in Fig. 3(a) and (b).

The weight of the triplet component increases and ap-
proaches that of the singlet component as the SO cou-
pling strength increases. In Fig. 3(c) and (d), we plot
the zero-momentum dynamic and static spin structure
factor [12], respectively. In the absence of the SO cou-
pling, both these quantities vanish identically. Hence a
nonzero spin structure factor is a direct consequence of
triplet pairing [4]. Note that spin structure factor can
be measured using the Bragg spectroscopy method as
demonstrated in recent experiments [13].
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Figure 4: (Color online) Density distributions of a trapped
unitary Fermi gas at T = 0 (a) and T = 0.8Tc,0 (b). Tc,0 is the
critical temperature in the absence of the SO coupling. (c),
(d) and (e) display the log-scale contour plot of the momen-
tum distribution for a trapped SO coupled ideal gas at T = 0,
unitary gas at T = 0 and unitary gas at T = 0.8Tc,0, respec-
tively. Here the Fermi energy is given by EF = (3N)1/3~ω0,

Fermi wave number kF = (24N)1/6a−1

ho , Thomas-Fermi ra-

dius rTF = (24N)1/6aho, and the non-interacting peak den-

sity nTF = (24N)1/2/(3π2)a−3

ho , where aho =
√

~/(mω) is the
characteristic length of the harmonic oscillator.

Probing the anisotropic superfluid — One leading can-
didate to observe superfluid rashbons is a trapped Fermi
gas of 40K atoms near a broad Feshbach resonance, where
an applicable scheme to generate the Rashba SO coupling
was recently proposed [3]. Previous experiments have
demonstrated the measurement of momentum distribu-
tion and single-particle spectral function in 40K without
the SO coupling [14]. We perform the mean-field calcula-
tion in a 3D spherical harmonic trap VT (r) = mω2

0r
2/2,

by using the local density approximation (LDA) [15].
In LDA, the gas is divided into small cells with a lo-
cal chemical potential µ(r) = µ0 − VT (r), where µ0 can
be determined by the number equation

´

drn(r) = N ,
where N is the total number of fermions. The local den-
sity n(r), momentum distribution n(k; r)/(2π)3, occu-
pied spectral function A(k, ω; r)f (ω) k2/(2π2) are then
integrated over the whole space to obtain the total contri-
bution. We show, in Fig. 4(a) and (b), the density profiles
of a trapped unitary Fermi gas at different SO coupling
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strengths and temperatures. As anticipated, with the in-
crease of the SO coupling the cloud shrinks. As shown in
Fig. 4(c)-(e), the anisotropic momentum distribution at
large SO coupling, which can be measured using the time-
of-flight technique, is not washed out by the trap. This
anisotropy originates from the SO coupling, which also
manifests itself in a non-interacting system [see Fig. 4(c)].
However, by comparing Fig. 4(c) with (d) and (e), one
can clearly see the effects of the interaction which greatly
widens the momentum distribution.
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Figure 5: (Color online) Log-scale contour plot of the single-
particle spectral function for a trapped unitary Fermi gas at
T = 0.8Tc,0. The SO coupling strength in (a) and (b) is
λkF /EF = 1, and in (c) and (d) is λkF/EF = 2.

Figure 5 presents the occupied spectral function at
T = 0.8Tc,0, where Tc,0 is the critical temperature with-
out the SO interaction. The distinct behavior for the
spectral function at θ = 0 (along the z-axis) and π/2
(in the transverse plane) can be probed by the recently
demonstrated momentum-resolved rf-spectroscopy [14].
To make better comparison with the experiment, we
have included in the calculation an energy resolution of
0.2EF , as presented in the JILA rf-measurement. Both
Fig. 4 and Fig. 5 therefore clearly demonstrate that the
anisotropic nature of the rashbon superfluid will not be
smeared out by averaging over the trapped cloud.

Summary — We have shown that Fermi superfluid sub-
ject to a strong Rashba spin-orbit coupling differ signifi-
cantly from the conventional BEC-BCS crossover system
studied intensively over the past few years. Rashbons —
the two-body bound states induced by the SO coupling —
have anisotrpic effective mass and condense into a mixed
spin pairing state. They lead to a strong anisotropy in
the momentum distribution and the single-particle spec-
tral function as well as a higher critical temperature. We
have proposed that these distinct behaviors can be read-
ily probed in a trapped strongly interacting Fermi gas of
40K atoms in a synthetic non-Abelian gauge field.

More interesting properties of the system may be dis-

covered thanks to the unprecedented controllability in
ultracold atoms. SO coupled Fermi gas in 2D may be
utilized to create Majorana fermions [5, 16]. Topologi-
cal phase transitions may be induced by an additional
Zeeman field [16]. Therefore, the exploration of strong
correlation effects of SO coupled Fermi gases represents
a new exciting avenue of research in many-body prob-
lem. In the current work, we have adopted a mean-field
approach. The mean-field calculation in the condensed
phase can be improved by incorporating gaussian pair
fluctuations [17] in the future.
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Note added: After completing our work, we noticed
the work of Ref. [18] which treats a similar system. Our
results agree with each other where they overlap.
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