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It is shown that a vorticity, constructed from spin field of a quantum spinning plasma, combines
with the classical generalized vorticity (representing the magnetic and the velocity fields) to yield
a new grand generalized vorticity that obeys the standard vortex dynamics. Expressions for the
quantum or spin vorticity, and for the resulting generalized helicity invariant are derived. Reduction
of the rather complex spinning quantum system to a well known and highly investigated classical
form opens familiar channels for the delineation of physics peculiar to dense plasmas spanning solid
state to astrophysical objects. A simple example is worked out to show that the magnetics of a
spinning plasma can be much richer than that of the corresponding classical system.
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In this paper we demonstrate that a spinning quan-
tum fluid plasma [1, 2] retains the most interesting and
defining features of a classical ideal fluid. We will show,
in particular that it is possible to engineer a “grand gen-
eralized vorticity” (GGV) that obeys a vortex dynamic
structure. Such a GGV is created by combining the
erstwhile “generalized” classical vorticity Ωc = ∇× Pc,
where Pc = A + (mc/q)v is proportional to the canoni-
cal momentum [3, 4], and a “quantum vorticity” Ωq con-
structed from the macroscopic spin vector field S.

It is remarkable that we can rewrite a complex and
physically rich system as a quantum spinning plasma as
a standard vortex dynamics. At the very least it implies
a new composite constant of motion (the grand general-
ized helicity) and the existence of an Alfven/Kelvin the-
orem. This formulation, however, has the potential for
a far speedier extraction and exposition of a great many
properties of spinning plasmas. The most important step
in this new formulation is the construction/identification
of the quantum vorticity vector Ωq. As we will see, the
form for Ωq is, by no means, obvious. Before embarking
on the technical formulation, it is pertinent to put the
current work in a historical perspective.

The “project” of the fluidization of quantum systems
(Schrodinger, Pauli and Dirac equations) has been driven
by two related but distinct objectives:

1) Earlier investigators [5–8], wishing to understand
and interpret quantum mechanics in terms of familiar
classical concepts, were content to devise appropriate
fluid-like variables obeying the “expected” fluid like equa-
tions of motion: for example the continuity and the force
balance equation. Quantum mechanics entered the latter
through the so called “quantum forces” proportional to
powers of h̄. The fluidized system, of course, was equiv-
alent to the original quantum one.

2) After an extended hiatus following the initial studies
in quantum plasmas [9–13], the impetus for the recent im-
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pressive comeback of the fluidization “project”, however,
has come from a totally new direction-from attempts to
investigate the collective macroscopic motions accessible
to a fluid (plasma) whose elementary constituents follow
the laws of quantum rather than classical dynamics. The
new chapter may be labelled, more appropriately, as a
macroscopic theory of quantum plasmas as opposed to
the earlier efforts that mostly consisted of casting quan-
tum mechanics into a fluid-like mould. Much progress
has been made in first constructing the desired macro-
scopic frameworks, and then working out and exposing
new phenomena, originating in the quantum nature of
the constituent particles. The macroscopic formulations
(for studying collective motions of quantum fluids) have
invoked methodologies similar to those employed in clas-
sical plasmas; both the fluid and kinetic theories of simple
quantum [14–18], spin quantum [1, 2, 19–24], and rela-
tivistic quantum plasmas [25–29] have been constructed.
The current work on the vortex dynamic formula-

tion of spinning non relativistic quantum plasma, though
highly influenced by Takabayasi’s excellent papers span-
ning nineteen fifties to eighties [7, 8], is of the latter genre
for which the recent trend setting work of Marklund and
Brodin [1, 2] provides a basic reference. The focus of this
paper is on the elucidation of the basic concept of quan-
tum vorticity. We will, therefore, work with the simplest
model (the equivalent of an ideal classical fluid) obtained
from Refs. [1, 2] by neglecting complicated effects like the
spin-spin and the thermal-spin couplings.
The spin quantum plasma is described by three cou-

pled equations for the density n, the fluid velocity v and
the spin vector S. First two are the continuity

∂n

∂t
+∇ · (nv) = 0 , (1)

and the momentum equation

m

(
∂

∂t
+ v · ∇

)
v = q

(
E+

v

c
×B

)
+ µSj∇B̂j +Ξ ,

(2)
with

B̂ = B+
h̄c

2qn
∂i (n∂iS) , (3)
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where q (m) is the particle charge (mass), E and B are
the electric and magnetic field respectively, µ = qh̄/2mc
is the elementary magnetic moment, h̄ is the reduced
Planck constant, c is the speed of light, Sj is the j-
component for the normalized unit-modulous spin vector

S (S · S = 1), and B̂j is the j-component of B̂. Notice,
that the usual spin vector used in Refs. [1, 2] is h̄S/2.
The last term in the momentum equation is the force

produced by the total fluid pressure

Ξ = − 1

n
∇p+

h̄2

2m
∇
(∇2

√
n√

n

)
+

h̄2

8m
∇
(
∂jSi∂jSi

)
, (4)

consisting of the classical pressure p, the Bohm potential
(the second term), and the effective spin pressure.
The third equation is the evolution of spin vector

(
∂

∂t
+ v · ∇

)
S =

2µ

h̄

(
S× B̂

)
, (5)

that is similar to the classical preccesion equation for the
spin with the spin correction to the magnetic field. The
set of Eqs. (1), (2) and (5) is completely equivalent to
those found in the primary Refs. [1, 2].
Let us now convert the system into evolution equa-

tions for the appropriately defined vorticities. Using
E = −∇φ − ∂tA/c, B = ∇ × A (φ and A are the
scalar and vector potentials), and the vector identity
(v · ∇)v = ∇v

2/2− v × (∇× v), Eq. (2) becomes

∂Pc

∂t
= v ×Ωc +

h̄

2m
Sj∇B̂j +

c

q
Ξ̂ , (6)

where Ξ̂ = Ξ −∇(qφ +mv
2/2), and Pc is proportional

to the classical canonical momentum

Pc = A+
mc

q
v . (7)

The ensuing classical generalized vorticity (vorticity will
have the dimensions of the magnetic field throughout this
paper)

Ωc = ∇×Pc = B+
mc

q
∇× v , (8)

will, then, obey

∂Ωc

∂t
= ∇× (v ×Ωc) +

h̄

2m
∇Sj ×∇B̂j , (9)

obtained, by taking the the curl of Eq. (6) and having
assumed a barotropic fluid. We notice that the spin de-
pendent forces destroy the canonical vortical structure
for Ωc [3, 4]. Consequently, the classical generalized he-
licity [〈 〉 =

∫
d3x]

hc = 〈Ωc ·Pc〉 , (10)

is no longer conserved. We remind the reader that the
(generalized) helicity conservation is one of the most im-
portant properties of ideal fluids and is the primary dy-
namical constraint that allows the formation of a host of

non trivial self-organizing equilibrium configurations in
magnetohydrodynamics, and also in more general plasma
descriptions. The loss of a helicity invariant could make
it much harder to understand the fundamental motions
of a spinning quantum fluid
One could take the alternative view that spin forces

act as a quantum source (proportional to h̄) that may
create or destroy helicity via

dhc

dt
=

h̄

m

〈
Ωc

iSj∂iB̂j

〉
, (11)

and, in the process, cause transitions to a different he-
licity state. Observe that only the spin force, being non
potential, survives in the vortical equation. The potential
quantum forces like the Bohm potential do not contribute
to the vorticity evolution.
Experience, however, indicates that, though, addition

of new physics (to fluid mechanics) does destroy old in-
variants, new and more encompassing new invariants of-
ten emerge [30, 31]. Spinning quantum plasmas prove to
be no exception! Guided by Takabayasi’s work [8], we
were able to uncover, what could be called, the spin or
quantum vorticity:

Ωq = S1 (∇S2 ×∇S3) + S2 (∇S3 ×∇S1)

+S3 (∇S1 ×∇S2) = ∇S1 ×∇S2/S3 , (12)

where the components of S are labeled by 1, 2, 3. Equal-
ity of the two expressions, displayed in Eq. (12), fol-
lows from the constraint S2

1 + S2
2 + S2

3 = 1 implying
S1∇S1 + S2∇S2 + S3∇S3 = 0. For completeness, the
quantum vorticity could be also written in the compo-
nent form as Ωq

i = (1/2)εijkεlmnSl∂jSm∂kSn.
The quantum vorticity associated with the spin field

has many interesting features. First, it requires that all
Si and ∇Si to be non zero; the system must have varia-
tion in at least two dimensions for a non trivial Ωq. Sec-
ondly, although symmetric in the three spin components,
its form could not be easily guessed; it departs so funda-
mentally from the form taken by the vorticity ∇× v (or
∇×A) associated with the standard classical vector fields
v (or A). In spite of these peculiarities, it does conform
to our notions of a vorticity, i.e, it is the curl of a vec-
tor field: Ωq=∇×Pq, with Pq = −S3∇[arctan(S2/S1)].
The vector field is in the Clebsch form.
Manipulations of the spin dynamical equation (5)

yields the evolution equation

∂Ωq

∂t
= ∇× (v ×Ωq) +

q

mc
∇Sj ×∇B̂j , (13)

and its uncurled companion for the potential Pq [8]

∂Pq

∂t
= v ×Ωq +

q

mc
Sj∇B̂j . (14)

Notice that Ωq obeys exactly the same equation (9) as
is obeyed by Ωc. This is, of course, no accident; it was
the entire raison d’etre for constructing Ωq. The journey
from (5) to (13) is both unusual and profound.
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By adding and subtracting Eqs.(9) and (13), we derive
the two GGVs, Ω+ and Ω−

Ω± = Ωc ±
h̄c

2q
Ωq , (15)

explicitly showing that quantum modification to the clas-
sical vortex field is of order h̄/2. The new vorticities
follow:

∂Ω+

∂t
= ∇× (v ×Ω+) +

h̄

m
∇Sj ×∇B̂j , (16)

∂Ω−

∂t
= ∇× (v ×Ω−) . (17)

while the associated potential vector fields P± = Pc ±
(h̄c/2q)Pq satisfy

∂P+

∂t
= v ×Ω+ +

h̄

m
Sj∇B̂j +

c

q
Ξ̂ , (18)

∂P−

∂t
= v ×Ω− +

c

q
Ξ̂ , (19)

Equation (17) is clearly what we were seeking; the
grand generalized vorticity Ω− obeying the canonical
vortex dynamics. Thus the structure of the dynamics
of a spinning quantum plasma, in part, has been reduced
to that of a highly investigated and understood classical
system. The conserved helicity h− = 〈P− ·Ω−〉,

dh−

dt
= 0 . (20)

will serve as a “label” to characterize dynamical states of
a spinning quantum plasma.
It turns out, however, that the highly complex spin-

ning quantum plasma demands a two vorticity theory
with only one of them as a basic invariant. The second
generalized quantum helicity h+ = 〈P+ ·Ω+〉 is not con-
served, and its rate of change is given by

dh+

dt
=

2h̄

m

〈
Ω+

iSj∂iB̂j

〉
. (21)

In the wake of Eqs.(9) and (13), the rate of change of
either hc or hq is proportional to dh+/dt.
To the vorticity equations, we add Maxwell’s equations

∇×B =
4π

c
J+ 4π∇×M +

1

c

∂E

∂t
, (22)

to complete the dynamical system consisting of the mag-
netic, velocity and spin fields. It contains the normal
current density J, and M = µnS is the magnetization
that defines the spin current density ∇×M [2].
The main intent of this paper was to create the concep-

tual foundation for the vortex dynamic formulation of a
spinning quantum plasma. The next obvious step will be
to explore the class of equilibrium structures pertinent to

a spinning plasma by invoking the constrained (conserv-
ing Ω−) minimization of an appropriate energy functional
[4]. We will defer this investigation to a later detailed pa-
per and solve here a simple equilibrium problem that may
be viewed as a generalization of the London equation,
first proposed, to explain the Meissner-Ochsefeld effect
observed in type one superconductors. Electrodynami-
cally, the London equation is nothing but the absence of
generalized vorticity [32]

Ωc = B+
mc

q
∇× v = 0. (23)

Combined with the displacement current-free maxwell
equation it yields the strongly diamagnetic behavior
where the magnetic field (λ2

s∇2
B = B) is limited to a

skin depth λs = c/ωp (where ωp = (4πq2n/m)1/2 is the
plasma frequency) near the edge of a region of length L
(≫ λs).
The generalization of the London equation for the

spin quantum system, Ω− = 0, will span new equilib-
rium structures. This class of such equilibria, defined by
the vorticity equations (16), (17) and Maxwell equations
(22), for an incompressible fluid (∇·v = 0) with constant
number density, may be converted to the dimensionless
set:

∇× (Ωq × v) = ∇Sj ×∇
(
bj + a∇2Sj

)
, (24)

b+∇× v = aΩq , (25)

∇× b = v + a∇× S , (26)

with the following normalizations: all lengths to λ−1
s ,

magnetic field to a fiducial field B, and velocity to the
Alfven speed vA = cωc/ωp, where ωc = qB/mc is the
cyclotron frequency associated with the magnetic field.
Remarkably enough, the entire system has a sin-

gle characteristic parameter a = λcωp/(2vA) =
(λ2

c/λ
2
s)(mc2/h̄ωc) that determines the relative strength

of the newly found quantum vorticity to the canonical
vorticity. It may be viewed as the ratio between the
Compton length λc = h̄/mc and the classical length
vA/ωp. It could also be viewed as the square of the ratio
λc/λs ehanced by the ratio between the particle rest mass
and the “quantized magnetic energy”. The quantum con-
tribution tends to become more and more significant as
the density increases and as the magnetic field decreases.
For simplicity we assume a two dimensional varia-

tion with ∂/∂z = 0 and ∇ = êxd/dx + êyd/dy. For
the spin vector S, we propose the solution: S(x, y) =
êx g(x) cos y+ êy g(x) sin y+ êz f(x), such that f2+g2 =
1. For this ansatz, only the êz component survives for
the spin vorticity, Ωq = −êzf

′(x), where ′ = d/dx.
The inherent symmetry of the system suggests the fol-

lowing form for the magnetic field: b = êx p1(x) cos y +
êy p2(x) sin y+ êz p3(x). For these forms of S and B, the
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equilibrium set reduces to ordinary differential equations
in x. Equations (25) and (26) yield

2p1 − p′′1 = a (g′ + g) , (27)

2p2 − p′′2 = −a (g′′ + g′) , (28)

p′′3 − p3 = a (f ′′ + f ′) , (29)

out of which (28) collapses to (27) because ∇ ·b = (p′1 +
p2) cos y = 0 (or p2 = −p′1).
The set (27)-(29) is augmented by a third equation

derived from Eq. (24) whose left hand side is identically
zero and the right hand side has only êz-component. The
third equation g(p′′1 + p′1) = g′(p′1 + p1) integrates to

p′1 + p1 = αg , (30)

where α is a constant which must be determined by
boundary conditions. The fields b and S will be known
when we solve Eqs. (27), (29) and (30). In analogy with
a superconducting solution, let us consider a domain
0 < x < L (with periodic behavior in y), with L ≫ 1
(normalized to the skin depth). It is straightforward to
verify that a consistent solution to the whole system is:
g(x) = ek(x−L) (g ≤ 1), p1 = αek(x−L)/(k + 1), and

p3(x) = ex−L + aex
∫ x

L

dx′ex
′ d

dx′

√
1− e2k(x′−L) , (31)

where we have used f =
√
1− g2. The scale factor k =(

−aq ±
√
2 + aq

)
/(1 + aq), where aq = a/α.

Remembering that the classical solution is normally
taken to be b1 = 0 = b2, and b3 = ex−L (extreme dia-
magnetism (L ≫ 1) with field non zero only in a skin
depth), we find that the spin field has transformed it fun-
damentally: 1) The field b3 = p3 in the spinning plasma
has an additional quantum contribution proportional to a
with a new ”quantum scale” k. 2) Magnetic field compo-
nents perpendicular to spin vorticity, b1 = p1 cos y, and
b2 = −p1

′ sin y, emerge; their magnitude is proportional
to the spin vorticity. Detailed discussion and implications
of this particular solution, and also of other solutions,
including the ones in which the quantum spin vorticity
may dominate its classical counterparts, will be given in
a future paper. The main objective of this paper was
to construct an appropriate spin/quantum vorticity that
will lead to the emergence of a new generalized quantum
vorticity Ω− obeying the standard vortex dynamics of
the Helmholz form. Finding Ω− that guarantees the ex-
istence of a dynamical helicity invariant, constitutes the
main mathematical results of this paper. It is hoped that
the vortex dynamic structure will greatly aid in extract-
ing new physics inherent in the spinning plasmas.
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