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Here we demonstrate a novel quantitative procedure to pursue statistical studies on the 
geometric properties of photonic crystals and photonic quasicrystals (PQCs) which consist 
of separate dielectric particles. The geometric properties are quantified and correlated to 
the size of the photonic band gap (PBG) for wide permittivity range using three 
characteristic parameters: shape anisotropy, size distribution, and feature-feature 
distribution. Our concept brings statistical analysis to the photonic crystal research and 
offers the possibility to predict the PBG from a morphological analysis.  

One of the major recent revolutions in photonics, the 
photonic crystal, was proposed in 1987 [1]. Two-
dimensional (2D) photonic crystals are core 
components in a wide range of photonic 
applications[2-7], for example, optical circuits, 
spontaneous emission control devices, quantum 
information devices, waveguides, lasers, nonlinear 
interactions, and optical communications. All the 
above applications are enabled by the PBG, which 
determines the device quality and working 
frequency. Topology optimization procedures for 
photonic crystals [8] and PQCs [9] have been 
developed to achieve premier PBG properties. 
However, the physical meanings behind the 
numerical optimization procedures have not been 
revealed and the detailed role of the particular 
geometric factors on determining the PBG size has 
not yet been clearly identified. 
    In this letter, we demonstrate a statistical analysis 
on the geometric properties of 2D photonic 
structures. Three geometric parameters (shape 
anisotropy parameter, size distribution parameter, 
and feature to feature distance distribution 
parameter) are identified to have strong correlation 
with the associated PBGs. 

    Five periodic photonic crystals (Figures 1a 
through 1e) and 12 PQCs (Figures 1f through 1q), all 
with the same filling ratio ( 0.18f = ), are analyzed. 
This particular filling ratio is selected in order for 
those structures to have large transverse magnetic 
(TM) PBGs. The structures are chosen to cover a 
wide range of morphologies and rotational 
symmetries (2, 4, 6, 8, 10, and 12-fold) to effectively 
represent the various types of 2D PBG structures. 
Structures in Figure 1(a) through 1(e) are made by 
placing rods on a periodic lattice. The characteristic 
length scale 0d is the lattice constant. Structures in 
Figure 1(f) through 1(k) are made by placing rods or 
ovals on the vertices of the 8-fold, 10-fold, and 12-fold 
quasicrystal tilings generated by projection into 2D 

from a higher dimensional space. The characteristic 
scale 0d is the distance between the central particle 
at rotational symmetric axis and its neighbor 
particles. PQCs in Figure 1(l) through 1(q) are 
defined by the following level set equation [10, 11]: 

[ ]0 0

N-1
f(x, y) = cos 2πxcos(πn N) +2πysin(πn N) +φ

n=0
d d∑   (1) 

Here f(x, y) is a numerical landscape in the 2D plane 
which assigns a value to the general point with 
coordinate (x, y) . In equation (1), 0d is the 
characteristic length scale of the PQCs. If ( , )f x y t> , 
position ( , )x y  is occupied by material; if ( , )f x y t< , 
position ( , )x y  is occupied by air. Here t is a 
parameter which can be tuned to change the filling 
ratio of the resultant structure. The PQCs have 
Fourier transform patterns with 2N-fold rotational 
symmetry.  
   A large TM PBG is usually found in 2D structures 
consisting of separate dielectric particles and it is 
recognized that the particle resonances, which 
correspond to the peaks of the scattering cross 
section (SCS) [12], lead to the formation of the TM 
PBG [12-17]. If the optical wave frequency is slightly 
higher than the first resonance frequency of the 
particle, the transmitted wave passing through the 
particles is anti-phase with the incoming wave, 
which leads to destructive interference and the 
reflectance of the incoming optical wave [12]. 
Resonance is believed to be the main physical reason 
for the formation of the TM PBGs for frequencies 
falling between the first and second resonance 
frequencies [12]. Such TM PBGs are rather 
insensitive to the positional disorder of the particles 
[13, 14].  

Next, we provide a statistical analysis on the 
features of the PBG structures shown in Figure 1 
and select three important geometric parameters 
which strongly influence the corresponding TM PBG. 
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The first parameter is the shape anisotropy 
parameter (α ). The particle shape brings strong 
impact on the scattering properties; therefore it is 
highly related to the TM PBG. For a typical non-
circular particle, we can define the averaged radius: 
r A π= , here A is the area of the particle. For an 

arbitrary point on the surface of the particle, 
r denotes the vector from the center of mass to the 
surface point. r rΔ = −r indicates the deviation of 
the particle shape from the isotropic circular shape. 
For circular shape particle, rΔ  equals zero at all 
surface points. The normalized integration of rΔ over 
the particle i  is:  

                       2
i i iS
r ds S rQ

∂
Δ= ∫                       (2) 

Here iS is the perimeter of the particle i  and S∂ is the 
particle surface. The shape anisotropy factor α is 
defined by the averaged Q  for the PBG structure: 
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Here M  is the total number of particles. For the 
structures investigated, we choose a fundamental 

domain with M ~1000; 
1

M

i
∑
=

is the sum for all 

M particles.  The larger the α parameter, the more 
the particle shape deviates from the circular shape. 
A non-circular dielectric feature has different 
scattering cross section for waves incident from 
different angles, which is disadvantageous to achieve 
wave propagation suppression for all in-plane 
directions; therefore a larger value of α leads to a 
lower TM PBG consistent with the observation that 
the structures comprised of circular elements are 
found to open larger TM PBGs than the structures 
consisting of non-circular elements [9, 18]. 
   The size of the particle determines the resonance 
frequency ( 1f r∝ ). The second structural 
characterization factor β  is the standard deviation 
of the areas of the particles: 
                         2
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Here A is the averaged area of the M particles. A 
larger β indicates a more polydisperse particle size 
distribution. Particles with various sizes correspond 
to different resonance frequencies, which are 
disadvantageous for uniform and isotropic wave 
propagation suppression; therefore a larger β leads to 
a lower TM PBG. 

Lastly, the neighbor-neighbor particle distribution 
is important because optical wave confinement, 

which is an important property of PBG, is a local 
effect. For every particle 0P , there are a group of n  

neighboring particles ( 1 2, ..... nP P P ) with particle to 

particle distance 0 01.5id d< −> < . Here 0 id <−>  is the 

distance between the particle 0P  and the particle iP , 

and 0d is the characteristic length scale for the 

structure defined previously. 01.5d is selected as the 
criterion to identify whether two particles are 
neighbors. The normalized deviation of the particle-
neighbor particle distance for particle i  is: 
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We define the third factor,γ , to represent the 
averaged X  for the associated PBG structure: 
                     2
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Here in is the number of neighbor particles of 

particle iP . A largerγ indicates a more polydisperse 
neighbor particle distance distribution and lower 
local positional order. Loss of short range order is 
disadvantageous for coherent scattering and the 
isotropic local confinement of EM wave is hard to 
achieve due to the leakage from a non-uniform 
neighbor particle distribution; therefore a large γ  
leads to lower TM PBG. 
   According to the above analysis, all three factors 
bring strong impact on the TM PBG size. We define 
an overall morphological factor (q ) as a linear 
combination of three geometric factors: 

   

2 2( ) ( ) ( 1)
1 1

2( ) ( 1)
0 1 0 0

M M
q c r ds S r M c A A M Ai i is ii i

nM i
c d d n Md c c ci j i
i j

α β

γ α β γα β γ

Δ + − −∑ ∑∫∂= =

+ − − = + +∑ ∑ <−>
= =

=
   (7) 

Here cα , cβ and cγ are positive weighting coefficients 
for the geometric factors, which are functions of 
permittivity contrast ratio. Next, we calculate the 
individual geometric factors of the 17 structures and 
the associated TM PBGs for three permittivities: (1) 
silicon/air contrast ratio ( 2 1: 13 : 1ε ε = ); (2) GaAs/air 

contrast ratio ( 2 1: 11.4 : 1ε ε = ), and (3) silicon nitride/air 

contrast ratio ( 2 1: 4 : 1ε ε = ). The size of PBG is 
determined from the local density of states calculated 
via finite-difference time-domain (FDTD) method 
[18, 19]. The geometrical parameters of the 17 
structures and the associated TM PBGs are shown in 
supplementary material (supplemental Table 1). 
According to the data, we propose a simple linear 
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model to correlate the TM PBG and the overall 
geometrical factor: 
                PBG size b kqω ω= Δ = −                        (8) 
For 2 1: 13 : 1ε ε = , values of 0.97cα = , 1.03cβ = , and 

0.5cγ =  lead to the best correlation: the correlation 

coefficient (R ) equals 0.95. The slope ( k ) in 
equation (8) equals 0.3 and the intercept (b ) equals 
0.46. For 2 1: 11.4 : 1ε ε = , values of 0.31cα = , 0.64cβ = , 

and 0.5cγ =  lead to the best correlation: 0.94R = , 

0.58k =  and 0.45b = . For 2 1: 4 : 1ε ε = , values of 
0.05cα = , 0.21cβ = , and 0.5cγ =  lead to the best 

correlation: 0.85R = , 0.98k =  and 0.246b = . From 
inspection of the weighting coefficients, the most 
important parameter at high refractive index 
contrast is the standard deviation of the particle area 
distribution ( β ) while the particle distribution factor 
γ  is the most important parameter at low refractive 
index contrast. The PBGs of the structures are 
plotted as the black squares in Figure 2 and the lines 
in Figure 2 are the linear models from equation (8). 
For 2 1: 13 : 1ε ε = , the TM PBG sizes of the structures 
deviate less than 3.1% gap size from the linear 
relation. For 2 1: 11.4 : 1ε ε = , the deviation is less than 

4.5% gap size. For 2 1: 4 : 1ε ε = , the deviation is less 
than 6.0% gap size. Figure 2 indicates that the 
overall geometric factor q  and the TM PBG size are 
related as the trend that PBG size decreases with 
increased q  as expected.   
    In Figure 2, PCs and PQCs consisting of uniform 
circular rods (R-p6mm, 8mm, 10mm,  and 12mm) 
have zero shape anisotropy parameter ( 0α = ) and 
zero standard deviation of area ( 0β = ). Therefore 
they have low overall factors. Further, circular 
particles lead to strong isotropic Mie resonance, 
therefore they have large PBGs and occupy up left 
corner of the figure. If 0A A− ≠ , such as occurs for 
the R - p6mm - 0.2ΔA structure in Figure 1(b) and 
the R - p6mm - 0.4ΔA structure in Figure 1(c), the 
PBG size decreases as the area deviation increases. 
   Compared to PQCs consisting of rods, PQCs 
consisting of ovals (O-8mm, O-10mm, and O-12mm) 
have a higher overall factor q  because of the non-
circular features. The optical paths along the long 
axis ( longnd ) and the short axis ( shortnd ) of the oval 
feature are different, which leads to an anisotropic 
resonance condition. Therefore they have smaller TM 
PBGs and occupy the middle area in Figure 2. 

   PQCs defined by level set equations, according to 
Figure 1(l) through 1(q), have non-circular features 
( 0α > ), non-uniform particle area distribution 
( 0β > ), and non-uniform neighbor particle distance 
distribution ( 0γ > ). This leads to high overall 
morphological factors and low TM PBGs. Therefore 
these structures occupy the bottom right corner in 
Figure 2(a) and Figure 2(b). As refractive contrast 
decreases, the PBG sizes of the structures also 
decrease. PQCs are more robust compared to 
photonic crystals though they do not exhibit higher 
PBGs than photonic crystals. For high permittivity 
contrast, a noticeable case is LS_N = 5_φ = 0π : the 
particle area distribution is highly polydisperse 
( 0.4β = ), so the expected lowest TM PBG, which is 
supposed to be between the first and the second 
resonance frequencies [12, 17], is destroyed by leaky 
modes and the actual lowest TM PBG for this 
structure is between the second and the third 
frequencies. Due to this shift toward higher 
frequency, the size of TM PBG is relatively lower 
than other LS-QCs. 

In the above discussion, we focused on the lowest 
PBG, which is usually the largest PBG for 2D 
photonic crystals. Among the 17 structures 
investigated, the structure of the triangular lattice 
( R - p6mm ) is an interesting photonic crystal device 
platform due to its large PBG. Next we use 
geometrical factors to predict the impact of possible 
experimental errors on the size of TM PBG. For 
example, we introduce a random deviation of particle 
area ( A = A Aδ± ) to the R - p6mm structure with 
permittivity contrast 2 1: 13 : 1ε ε = . The decrease of 
photonic band gap due to the experimental 
fabrication error Aδ can be estimated using the 
prediction based on the associated geometrical 
factors and the linear approximation in equation (8). 
For A = 0.1Aδ , the PBG size is predicted to be 43% 
and the FDTD simulation indicates that the actual 
PBG size is 46%. For A = 0.2Aδ , the PBG size is 
predicted to be 39.8% and the FDTD simulation 
indicates that the actual PBG size is 42%. 
For A = 0.3Aδ , the PBG size is predicted to be 36.7% 
and the FDTD simulation indicates that the actual 
PBG size is 34.6%. Next, we introduce three kinds of 
perturbations to the R - p6mm structure: in addition 
to the particle area deviation ( A = 0.2Aδ ), every 
particle has 40% probability to have its center shifted 
from the original coordinate ( , )x y  to ( , )x x y yδ δ± ± ; 
here 0, 0.14x y dδ δ = . Also, we assume the particle 
shape deforms to be oval with aspect ratio 
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1.5/long shortd d =  and random orientation. Such a 
distorted structure has an overall factor (q ) of 0.385 
and the PBG size is predicted to be 34%. The FDTD 
simulation indicates that the actual PBG size is 
31.9%. All 4 tests above show that the actual PBG 
sizes deviate from the predictions based on 
geometrical factors less than 4% PBG size.  

Our concept of developing a statistical parameter 
related to the structural geometry can be extended to 
3D although in order to be self supporting, 
dielectric/air structures need to have the dielectric 
regions connected.  For resonance dominant TM gap 
formation, a "tight binding" structure is necessary, 
requiring thin connecting "bonds" between the larger 
dielectric nodes.  The q factor in 3D will then be 
related to variations in the shape, sizes and 
distances of the nodes as well as the overall isotropy 
of the structure. 

In conclusion, we employed a novel statistical 
procedure to correlate the geometric properties of 17 
PBG structures and their TM PBG sizes. Based on 
our analysis, to achieve a photonic crystal with a 
large TM PBG, one needs separate circular particles 
with uniform distribution. The physical meaning of 
the interesting optimization procedures proposed 
before [8, 9] are revealed: the PBG optimizations, 
which are done numerically by tuning the 
coefficients of level set equations [9] or the gradient-
based algorithm known as topology optimization [8], 
are essentially tuning the particle shape to the near-
circular shape ( 0α ≈ ) and reaching a uniform 
particle distribution with nearly the same neighbor 
particle distance ( 0β ≈  and 0γ ≈ ).  
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Figure 1: the 17 photonic structures examined. The 
structure index is shown above each figure. Here R 
stands for rods; O stands for oval; LS stands for level 
set equations and the rotational symmetry of the 
associated PQC is 2N. (a): rods in a triangular 
lattice; (b) rods in a triangular lattice, the rods have 
two area values: 1.2A and 0.8A ; (c) rods in a 
triangular lattice, the rods have two area values: 
1.4A and 0.6A ; (d) rods in a square lattice; (e) rods in 
a parallelogram lattice; (f) through (h): QCs from 
placing rods in 8mm, 10mm, 12mm QC tilings; (i) 
through (k): QCs from placing ovals in 8mm, 10mm, 
12mm QC tilings; (l) through (q) QCs from level set 
equations. The values in the end of the structural 
index ( 0π , 0.25π , 0.5π , 0.75π , 1π ) stand for ϕ  
values. For N=4, all ϕ  values lead to the same 
structure, therefore there is no ϕ  value at the end of 
the structural index.  

Figure 2: the relationship between the overall 
geometric factor q and the size of TM PBG for three 
permittivity contrasts.  
 






