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In gravitational-wave astronomy, data analysts often wish to characterize the expected parameter-estimation
accuracy of future observations. The semianalytical Fisher-matrix formalism provides lower bounds on the
spread of the maximum-likelihood estimator across noise realizations; it also provides the leading-order width of
the posterior probability density. However, the Fisher matrix is limited to the high-SNR limit, which is often not
realized in practice. By contrast, Bayesian-inference Monte Carlos characterize the full posterior as a function
of noise for any SNR, but they are usually too computationally costly to repeat for a representative sample of
noise realizations. In this article, I describe a semianalytical technique to exactly map the sampling distribution
of the maximum-likelihood estimator across noise realizations at any SNR, generating an intermediate amount
of information with significantly less computation. This technique can be applied to any estimation problem
characterized by additive Gaussian noise.

PACS numbers: 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym

The first direct detections of gravitational-wave (GW) sig-
nals are likely to be achieved in the second half of this decade
with second-generation ground-based interferometric detec-
tors such as Advanced LIGO and Virgo [1], which are sensi-
tive to high-frequency GWs (10–1000 Hz). Third-generation
instruments such as the Einstein Telescope [2] promise much
greater reach and yield, while space-based observatories simi-
lar to LISA [3] will be sensitive to low-frequency GWs (10−5–
10−1 Hz) in a band populated by thousands of detectable
sources in the Galaxy and far beyond. A survey of the sci-
entific literature on GW data analysis in this pre-detection
era reveals a few dominant genres: articles on data-analysis
methods and implementations [e.g., 4]; non-detection and
upper-limit analyses of actual collected data [e.g., 5]; and
“prospects” papers that examine combinations of GW sources
and detectors to characterize the expected rates of detection
and accuracies of source-parameter estimation [e.g., 6].

Papers in this last class, especially when they are concerned
with Bayesian inference for modeled GW signals, follow a
well-rehearsed structure: a) derive the GW signal h as a func-
tion of the source parameters θ ; b) fix fiducial true values θtr
for them; c) simulate a realization n of detector noise, usu-
ally assumed as additive and Gaussian; d) derive the noise-
dependent probability distribution p(θ ;n) for the source pa-
rameters given the data s = htr + n; e) characterize the error
and uncertainty of p(θ ;n); f) finally, repeat steps c, d, and
e for a sufficiently broad sample of noise realizations, since
each of these will result in different parameter estimates and
uncertainties. Optimally, repeat for different fiducial θtr.

Step d [calculating p(θ ;n)] is usually very computation-
ally expensive: for more than two or three source parameters,
in Bayesian inference it must be performed with a stochastic
technique such as Markov Chain Monte Carlo [7], which may
involve ∼ 106 evaluations of the likelihood for different θs.
Each evaluation requires obtaining the GW signal h(θ) and
performing an FFT (say, for 105 points) to compute the likeli-
hood of the noise residual [see the discussion around Eq. (1)].
Step f is therefore a Monte Carlo of Monte Carlos (perhaps

again 106 of them), with a total computational cost, for a sin-
gle θtr, of∼ 1018 floating-point operations, more than can usu-
ally be procured easily. More emphatically, I call this scheme
the Holy Grail of parameter-estimation prospects: even the pa-
pers that try hardest [e.g., 8], perform meta-Monte Carlos of
∼ 100 combinations of noise realizations and fiducial sources.

Most “prospects” papers, instead, take advantage of the fact
that steps d to f can be short-circuited when the signal-to-noise
ratio (SNR) of detection is sufficiently high that p(θ ;n) col-
lapses to a normal distribution centered around the maximum-
likelihood parameters θml(n), with covariance given by the
inverse Fisher matrix, which is not a function of n. At high
SNR, the distribution of θml for different noise realizations is
itself normal and centered at θtr, with covariance again given
by the inverse Fisher matrix. The computational cost of this
approximation (for a single θtr and 105-point likelihoods) is
∼ d2×106 floating-point operations, where d is the number of
source parameters, affording virtually instantaneous results.

Unfortunately, as I discuss at length in Ref. [9] and as
highlighted elsewhere [6, 10], for many practical parameter-
estimation problems SNRs will not be sufficiently high to jus-
tify the approximation. The crux of the problem is that the
Fisher matrix, built from the partial derivatives ∂h/∂θi of the
signal, can only represent h correctly if h is linear in all the
θi across ranges comparable to the expected parameter er-
rors. These decrease as SNR grows, making the condition less
stringent; in Ref. [9] I provide a criterion to determine when
SNR is high enough.

Thus, in general a Monte Carlo is needed for step d; fur-
thermore, the meta-Monte Carlo of step f is also necessary, be-
cause the particular noise realization does affect parameter un-
certainties, as shown in Fig. 2 for the toy model discussed later
in this paper. It is true [11] that for additive Gaussian noise
the average of p(θ ;n) across all ns equals p(θ ;n = 0); but
this averaged likelihood describes an unrealistic limit (infinite
observations of the same source with finite total SNR) that is
not representative of average or typical errors, except trivially
in the high-SNR limit. Thus, the shape and width of generic



2

p(θ ;n) cannot generally be obtained from p(θ ;n= 0), as sug-
gested in Ref. [12]. In Ref. [9] I derive an expansion of p(θ ;n)
in powers of 1/SNR, where n-dependent terms are seen at
next-to-leading order for both the centering and shape of the
posterior.

In this paper I describe and test a technique to perform
as less thorough, but more affordable survey than the Monte
Carlo of Monte Carlos: mapping the sampling distribution of
the maximum-likelihood (henceforth, ML) estimator θml [the
maximum of each p(θ ;n)] over all noise realizations. From a
classical-statistics (a.k.a. “frequentist”) viewpoint, the spread
of this distribution is formally the uncertainty of the ML point
estimator. From a Bayesian viewpoint [13], if priors are unim-
portant, the spread of this distribution describes one major
component of the expected error (the other is the intrinsic
spread of the posterior for each n).

Mapping the sampling distribution of the ML estimator.
We consider a large set of experiments in which we observe
the signal h(θtr), where θ i

tr is the d-dimensional vector of true
parameter values and h is an N-dimensional vector (e.g., a
time series) with N � d. In each experiment, the detector
output is s = n+ h(θtr), where n is additive Gaussian noise
distributed with p(n) = N exp−(n,n)/2. Here (·, ·) is the
standard signal inner product, given in one convention [6] by
(s, t) = 4Re

∫
∞

0 s̃∗( f )t̃( f )/S( f )d f , with ˜ denoting the Fourier
transform and ∗ the complex conjugate. In this paper, with-
out loss of generality, we treat (·, ·) as the inner product of an
abstract linear space, and let |s|2 ≡ (s,s).

For a given θtr and noise realization ntr, the ML estimator
θml(ntr,θtr) maximizes the probability of the residual noise n
obtained by subtracting the postulated signal h(θ) from the
data s = h(θtr)+ntr; that is, it maximizes

p(n = s−h(θ)) ∝ e−|h(θtr)+ntr−h(θ)|2/2. (1)

Thus, θml must satisfy the vector equation

MLi(θ ;n,θtr)≡ (∂ih(θ),h(θtr)+n−h(θ)) = 0, (2)

where the MLi are the partial derivatives of −2log p.
Our purpose is to map the distribution of θml across all

noise realizations. We can do this by enumerating all possible
ns (weighted by p(n)), figuring out the θml corresponding to
each, and accumulating the resulting distribution of θml. For-
mally,

p(θml = θ |θtr) =
∫

δ
(
θml(n,θtr)−θ

)
p(n)dn. (3)

Unfortunately, because h(θ) is generally a complicated func-
tion of the θ i, it is difficult to solve MLi = 0 for θml given
n, so we can only integrate Eq. (3) using a Monte Carlo ap-
proach where we generate full, high-dimensional realizations
of n (e.g., as time series), search parameter space for θml by
repeatedly evaluating Eq. (1), and iterate for many different n.

The main result of this paper is that there is a more effec-
tive way to map p(θml): we enumerate the θml, and com-
pute the total probability weight of the n that are compat-
ible with each. (Put slightly differently, for each θml we
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FIG. 1. To compute p(θml), we integrate p(n) over all noise
realizations that satisfy MLi = 0—see discussion below Eq. (4).
Here h(θ)= (cosθ ,sinθ), p(nx,ny)= (2π)−1 exp−(n2

x +n2
y)/2, and

θml = arctan(sy/sx). The resulting p(θml|θtr = 0) is shown top right.

count how many experiments would yield it as the maxi-
mum of likelihood.) Because the MLi are linear functions
of the n, this weight is the probability mass of the (N− d)-
dimensional subspace of the noise vectors that solve MLi = 0
for all i. Using the δ -of-function relation for the vector MLk,
δ (MLk(θ ;n,θtr)) = δ (θml(n,θtr)− θ)/|∂MLi(θ)/∂θ j|, we
can then rewrite p(θml = θ |θtr) as

N
∫

Πkδ
(
MLk(θ ;n,θtr)

)
×
∣∣∂MLi/∂θ j

∣∣e−(n,n)/2 dn. (4)

Figure 1 exemplifies the process of integrating over the n
compatible with a chosen θml. In this low-dimensional model
[14], detector data is described by a point in the plane, and
the signal family h(θ) by the unit circle. For each n, the true
signal htrue is displaced to a different s = htrue +n with proba-
bility p(n) indicated by the shading. Projecting back to h(θ)
identifies the ML waveform hml and parameter θml. All noise
realizations that produce an s within the gray sector project
to the same hml; thus, integrating p(n) over the sector yields
p(θml).

Equation (4) is especially powerful because, contrary to ap-
pearance, it does not require integration over the full N dimen-
sions of the noise, but only over ∼ d2 coordinate directions
corresponding to the MLk and ∂MLi/∂θ j. Since both these
sets of functions are linear in n, they can be seen as jointly
normal random variables that are fully characterized by their
inner products; all the other noise degrees of freedom have no
effect on the integral other than its normalization. (We spell
this out in detail in the next section.) With Eq. (4) in hand,
we can then sample p(θml) directly (for low d), or by Markov
Chain Monte Carlo techniques.

Evaluating the master integral. Equation (4) can be evalu-
ated elegantly as the expectation value of a function (the deter-
minant) of correlated random variables. For clarity, we follow
a more pedestrian approach: we begin by transforming the N-
dimensional integral over the n to new coordinates where the
first few basis vectors span the random variables of interest.
Namely, we write n in terms of a new basis where the first d
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vectors are obtained by orthonormalizing the ∂ih≡ hi,

n̂1 ∝ h1, n̂i ∝

(
1−

i−1

∑
j=1

n̂ j⊗ n̂ j

)
·hi; (5)

furthermore, we obtain the (d + 1)-th to d(d + 3)/2-th basis
vectors by orthonormalizing the ∂i jh≡ hi, j with i≥ j; the re-
maining N−d(d+3)/2 noise combinations complete the ba-
sis.

We can now rewrite all the variables that appear in Eq. (4)
in terms of the new basis:

n≡ Nkn̂k, hi ≡Ck
i n̂k, hi, j ≡Ck

i jn̂k; (6)

here the Nk, Ck
i , and Ck

i j are the coefficients that expand the n,
hi, and hi, j in terms of the n̂k. We use Einstein summations,
and treat (i j) both as a double index and as a single index
flattened to the range (d + 1), . . . ,d(d + 3)/2. By virtue of
orthonormalization, Ck

i = 0 for k > i and Ck
i j = 0 for k > (i j),

with Ci
i > 0 and C(i j)

i j > 0. Furthermore,

MLi ≡Ck
i Nk−Ck

i (∆h, n̂k),

MLi, j ≡Cm
i j Nm−Cm

i j(∆h, n̂m)−Ck
i C jk,

(7)

with ∆h ≡ h(θ)− h(θtr), and with the sums over k limited to
k ≤ i and the sums over m limited to m≤ (i j).

To perform the integral in Eq. (4), we use the first δ to fix
N1 = (∆h, n̂1), yielding a δ -normalization factor of 1/C1

1 ; we
use the second δ to fix N2 = (∆h, n̂2) (after the terms propor-
tional to N1 in the δ cancel out), yielding a factor of 1/C2

2 ; and
so on. Next, we perform the trivial integral over the “signal-
orthogonal” noise degrees of freedom that correspond to the
n̂k with k > d(d +3)/2, leaving

p(θml = θ |θtr) =
e−Σd

k=1(∆h,n̂k)
2/2

(2π)d(d+3)/4Πd
k=1Ck

k
×∫ ∣∣∣Cm

i j Nm−Cm
i j(∆h, n̂m)−Ck

i C jk

∣∣∣e−NmNm/2 dNm; (8)

here the sums over m span [15] m = (d + 1), . . . ,d(d + 3)/2,
and the sum over k spans k = 1, . . . ,d.

For a given θ , the main computational cost of evaluating
Eq. (8) resides in the orthonormalization and in the compu-
tation of the (∆h, n̂m), which together require ∼ d4/8 inner
products (and therefore N-dimensional signal FFTs); by con-
trast, the d(d + 1)/2-dimensional Gaussian integral can be
evaluated much more cheaply (e.g., by a 10,000-point Monte
Carlo over Nm drawn from a normal distribution), since the
integrand is a function of small matrices and not long FFTs.

Fisher-matrix limit. The well-known high-SNR, Fisher-
matrix limit, in which the waveform can be approximated
as a linear function of the parameters (and in which the
θ i

ml have a simple jointly-normal distribution), follows eas-
ily by specializing Eq. (8). Without loss of generality, we set
h(θ) = θ ihi; it follows that hi, j = Ck

i j = 0. The integration

s  =  h  +  n

p
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FIG. 2. Likelihood maps obtained for the toy model (11) with differ-
ent ns and with the same (αtr, ftr), located at the origin of the plots.
Contours are plotted at levels that would correspond to 1-σ , 2-σ , and
3-σ ellipses for a normal distribution. The signal s = h+n is shown
above each map.

over the Nm is trivial, and yields (2π)d(d−1)/4|Ck
i C jk|, where

Ck
i C jk = (hi,h j)≡ Fi j is the infamous Fisher matrix. Further-

more, ∆h = hi∆θ i, where ∆θ i ≡ θ i
ml− θ i

tr is the error of the
ML estimator, so the first exponential of Eq. (8) can be rewrit-
ten as exp(−∆θ iFi j∆θ j/2), since the n̂k, for k = 1, . . . ,d, span
a complete basis for the hi. Last, because of the structure of

the Ck
i , Πd

k=1Ck
k =

√
|Ck

i C jk| =
√
|Fi j|. Taking everything to-

gether, we reproduce the Fisher-matrix result for the distribu-
tion of θml [16],

p(θml|θtr) =
e−∆θ iFi j∆θ j/2√
(2π)d |F−1

i j |
. (9)

The general result [Eq. (8)] can be restated in terms of Fi j,
in a form more suitable to computation:

p(θml = θ |θtr) =
e−(∆h,hi)(F−1)i j(∆h,h j)/2√

(2π)d |Fi j|
√

(2π)d(d−1)/2|Dµν |
×

∫ ∣∣Fi j +(∆h,hi j)−M(i j)
∣∣e−Mµ (D−1)µν Mν/2 dMµ ; (10)

here Dµν ≡ D(i j)(kl) is the d(d − 1)/2-dimensional square
matrix given by the products (h′i, j,h

′
k,l) with j ≤ i, l ≤ k:

the primes denote projection orthogonal to hk (i.e., h′i, j =

∑
d(d+3)/2
d+1 Ck

i jn̂k); and M(i j) is the matrix obtained from the
d(d−1)/2-dimensional vector Mµ of integration variables by
remapping indices.

Toy model. To exemplify the use of Eqs. (4) to map p(θml)
for low-SNR parameter estimation, let us consider a family of
sine–Gaussian signals given by

h(t;A,α, f ) = Ae−t2/2α2
sin(2π f t). (11)
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FIG. 3. Exact (left) and Fisher-matrix (right) sampling distribution of
θml. Contours are plotted as in Fig. 2, with the noisy white curves and
shading derived from the numerical maxima of 100,000 likelihood
maps for different ns, and the dark curves from Eq. (4). The dot
marks the most probable θml, slightly displaced from θtr.

We consider the problem of jointly estimating α and f , but
not A, which we fix to yield SNR = 5. For our example, we
select αtr = 1 and ftr = 0.25. As shown in Fig. 2, at this low
SNR different noise realizations yield strikingly different like-
lihood maps for the same true signal—all quite different from
the ellipsoidal Fisher prediction! In each map, the pale blue
dot marks the location of θml—indeed, the distribution of blue
dots is just the desired p(θml).

In Fig. 3, I show maps of p(θml) obtained using both
the brute-force approach [Eq. (3)] and the new method [Eq.
(4)]. For the former (the noisy white curves and shading),
I produced 100,000 likelihood maps p(θ ;n) with different ns
drawn from p(n), and 2D-histogrammed the resulting θml. For
the latter (dark curves), I used Eq. (4), as implemented by Eq.
(8). As expected, the maps agree, but the new method is con-
siderably faster. For comparison, the top–right plot shows the
Fisher-matrix prediction (9).

Conclusions. I have described a novel approach to create
exact maps, for any SNR, of the distribution of the ML estima-
tor for the source parameters of a signal embedded in additive
Gaussian noise. This distribution would be obtained in a large
set of observations of the same true signal with different noise
realizations, each appearing with probability p(n). Given a
single observation, such a map embodies the frequentist no-
tion of uncertainty for the ML estimator. From a Bayesian
viewpoint, if priors are unimportant, the map characterizes the
distribution of possible maxima of posterior probabilities.

In comparison to the computational cost of the “Holy Grail”
Monte Carlo of Monte Carlos (1018 operations), we estimate
the cost of Eq. (4) as follows: 106 Monte Carlo samples of
candidate θmls, times d4/8 inner products, times 106 floating-
point operations for each inner-product FFT (again assuming
N = 105); thus, even for d = 10, this scheme involves ∼ 1015

operations—a thousand times cheaper.
These maps can be used directly, in both frequentist

and Bayesian frameworks, to study parameter-estimation

prospects, but also to perform stringent tests of Fisher-matrix
predictions at low SNRs, and to provide proposal distributions
for Monte Carlo searches of unknown sources. An interesting
feature in this regard is that MLi = 0, a local condition, does
not distinguish between primary and secondary maxima of the
likelihood, and it will include the latter (if they are sufficiently
probable) in the maps; thus Eq. (4) could be exploited to en-
able jumps between separated peaks in complex likelihoods,
which are generally very difficult to locate. While this result
was derived in the context and with the motivation of GW sci-
ence, it is applicable to statistical inference for any problem
where noise can be regarded as Gaussian and additive, such
as several that arise in high-energy physics and observational
cosmology.
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