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Energy positivity is established for a class of solutions to Einstein-aether theory and the IR limit of
Hořava gravity within a certain range of coupling parameters. The class consists of solutions where
the aether 4-vector is divergence free on a spacelike surface to which it is orthogonal (which implies
that the surface is maximal). In particular, this result holds for spherically symmetric solutions at
a moment of time symmetry.
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INTRODUCTION

It is difficult to modify general relativity (GR) in a
fashion that meets basic theoretical requirements such as
stability, energy positivity, and the existence of a well-
posed initial value formulation. Even in the linearized
theory one or more of these properties often fails. Ana-
lyzing them in the full, nonlinear theory is of course much
more difficult, so much so that it is rarely done.

In this paper we shall establish a fully nonlinear pos-
itive energy result for two closely related modifications
of GR whose properties and predictions have been ex-
tensively studied over the past several years, “Einstein-
aether theory” and Hořava gravity. The first theory,
called “ae-theory” for short, consists of a dynamical unit
timelike vector “aether” field ua coupled to Einstein grav-
ity [1, 2] (for reviews see [3, 4]). The vector can be
thought of as the 4-velocity of a preferred frame; it spon-
taneously breaks local Lorentz symmetry since, being a
unit vector, it is everywhere non-zero in any solution,
including flat spacetime. Hořava gravity [5] (for a re-
view see [6]) can be viewed as general relativity coupled
to a preferred time function T , restricted by invariance
under reparametrizations of T . Thus it depends on T
only via the unit normal (timelike) vector field NT,a,
with N = (gmnT,mT,n)

−1/2. Here we consider the so-
called “non-projectable” version of that theory, in which
the lapse function N is allowed to be an arbitrary func-
tion of position, and we include in the action all terms
consistent with the symmetry of foliation preserving dif-
feomorphisms (so that the theory is dynamically well be-
haved [7]).

For both theories, we restrict to terms in the La-
grangian with no more than two derivatives of the metric
or the vector field. Hořava gravity theory is then equiv-
alent to a version of ae-theory in which the aether is
restricted to be hypersurface orthogonal at the level of

the action[7, 8].1 Moreover, the total energy of asymp-
totically flat solutions of the two theories are given by
the same expressions in terms of the metric and aether
fields (for ae-theory see [10, 11], for Hořava gravity see
[12, 13]). A positive energy result for ae-theory therefore
implies a similar result for Hořava gravity. We thus focus
the discussion on ae-theory.

The Lagrangian of ae-theory depends on four dimen-
sionless coupling constants c1,2,3,4. In the hypersurface
orthogonal sector of the theory, only the combinations
c14 = c1 + c4, c13 = c1 + c3, and c2 enter. The coupling
constants of Hořava gravity can be expressed in terms
of these combinations[7, 8]. Hyperbolicity, stability, and
energy positivity of the linearized theory hold for certain
ranges of the coupling constants in ae-theory [10, 14–16]
and Hořava gravity [7, 9]. These ranges coincide in the
two theories for the spin-2 and spin-0 modes. (Ae-theory
has an additional spin-1 mode.) Here we establish a pos-
itive energy result for the full, nonlinear theory.

One might approach this problem by considering the
aether field as simply one more matter field and trying
to use the usual results for positivity of mass in general
relativity. However, the aether Lagrangian involves the
covariant derivative (as opposed to the exterior deriva-
tive, which is all that is needed for minimally coupled
scalar fields or for electromagnetism). This leads to very
different behavior of the action when the metric is varied
and in particular to the violation of the dominant en-
ergy condition for the energy-momentum tensor. Since
the dominant energy condition is what is needed for both
the Schoen-Yau[17, 18] and Witten[19, 20] proofs of the
positive energy theorem, these results do not apply to ae-

1 Every hypersurface orthogonal solution of ae-theory is a solution
of Hořava gravity. The converse is not true in general, but it does
hold in spherical symmetry for solutions with a regular center [9].
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theory, and one might therefore expect that energy is not
positive in ae-theory. On the other hand, a spherically
symmetric static vacuum solution is known explicitly[21]
which has positive energy despite having everywhere neg-
ative aether energy density, which suggests that there
may be a general positive energy property.

The question we are addressing here is whether the
total energy Mæ of asymptotically flat solutions in ae-
theory is positive. (It turns out that this energy is not the
same as the ADM mass MADM that defines the total en-
ergy in general relativity, although the ratio Mæ/MADM

may be a universal constant.) As we will show, this is
indeed the case for solutions where the vector field is
hypersurface-orthogonal and where one of those hyper-
surfaces is asymptotically flat and has vanishing trace of
the extrinsic curvature (i.e., is “maximal”). In particu-
lar, this result holds for spherically symmetric solutions
at a moment of time symmetry. The possibility of gen-
eralizing this result is briefly discussed at the end of the
paper.

The method of proof will be to exploit the result of
Schoen and Yau [17] which shows that the ADM mass
of an asymptotically flat spatial metric on an orientable
three-manifold is non-negative if the Ricci scalar is non-
negative. Although the Ricci scalar of the physical 3-
metric is not generally non-negative, we will find a con-
formally related 3-metric with positive Ricci scalar and
whose ADM mass is equal to Mæ of the original space-
time.

EINSTEIN-AETHER THEORY

The action for Einstein-aether theory is the most gen-
eral generally covariant functional of the spacetime met-
ric gab and aether field ua involving no more than two
derivatives (not including total derivatives),

S =

∫ √
−g (Læ + Lm) d

4x (1)

where

Læ =
1

16πG
[R−Kab

mn∇au
m∇bu

n+λ(gabu
aub+1)] (2)

and Lm denotes the matter lagrangian. Here R is the
Ricci scalar, Kab

mn is defined as

Kab
mn = c1g

abgmn+ c2δ
a
mδbn+ c3δ

a
nδ

b
m− c4u

aubgmn (3)

where the ci are dimensionless coupling constants, and
λ is a Lagrange multiplier enforcing the unit timelike
constraint on the aether. The convention used in this
paper for metric signature is (−+++) and the units are
chosen so that the speed of light defined by the metric
gab is unity.

The field equations from varying (1) with respect to
gab, ua, and λ are given respectively by

Gab = Tæ
ab + 8πGTm

ab (4)

∇aJ
a
b + λub + c4aa∇bu

a = 0 (5)

uaua = −1. (6)

Here Gab is the Einstein tensor of the metric gab and Tm
ab

is the matter stress tensor. The quantities Ja
b, aa and

the aether stress-energy Tæ
ab are given by

Ja
m = Kab

mn∇bu
n (7)

aa = ub∇bua (8)

Tæ
ab = λuaub + c4aaab − 1

2gabJ
c
d∇cu

d

+ c1 (∇auc∇bu
c −∇cua∇cub)

+ ∇c

[

Jc
(aub) + ucJ(ab) − J(a

cub)

]

. (9)

In the weak-field, slow-motion limit, ae-theory reduces
to Newtonian gravity with a value of Newton’s constant
GN related to the parameter G in the action (1) by GN =
G(1−c14/2)

−1 [24]. Note that a sensible Newtonian limit
requires that c14 < 2.

The total energy of an asymptotically flat solution, de-
fined in the asymptotic aether rest frame, is given by

Mæ = MADM − c14
8πG

∫

∞

raaa, (10)

where MADM is the usual ADM mass (16), the integral
is over a two-sphere at infinity, and ra is a unit vector
in the radial direction. (The total energy was first found
by Eling[10] using pseudotensor methods, and then by
Foster[11] using Wald’s Noether charge method[22, 23].
It is written in the above form in [11].) At least in
the weak-field, slow-motion limit, we have GNMæ =
GMADM. That is, the difference between Mæ and MADM

is accounted for by the difference between GN and G. We
suspect that the equalityGNMæ = GMADM holds in gen-
eral (i.e. not just in the weak field slow motion limit) and
therefore that positivity of Mæ is equivalent to positivity
of MADM when c14 < 2. However, for the purposes of
this paper we will only address the question of positivity
of Mæ.

HYPERSURFACE ORTHOGONAL CASE

We consider here only solutions where ua is hypersur-
face orthogonal. This is always the case in spherical sym-
metry, but more generally it is a bona fide restriction. On
an asymptotically flat slice orthogonal to ua the spatial
metric hab and extrinsic curvature Kab are given by

hab = gab + uaub (11)

Kab = −ha
c∇cub. (12)
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The trace of the extrinsic curvature is given by

K = −∇au
a. (13)

If ua is orthogonal to surfaces of constant t for some
function t, then ua = N∇at for some “lapse” function
N . Crucial for our purposes here is the fact that in this
case the acceleration vector aa = ub∇bua is equal to a
spatial gradient,

aa = Da lnN, (14)

where Da is the spatial derivative operator.
Using this expression for the acceleration of the aether,

the total energy (10) becomes

Mæ = MADM −
c14
8πG

∫

∞

ri∂iN. (15)

The energy takes this simple form because it is defined
and expressed in the asymptotic aether rest frame, and
we have chosen the t coordinate so that N → 1 at infin-
ity. Note that the second term in this expression for the
aether mass is similar to the change of the ADM mass
under a conformal transformation. Consider a confor-
mally transformed metric h̃ab = Ω2hab where Ω → 1 at
infinity. Since the ADM mass is given by

MADM =
1

16πG

∫

∞

ri(∂jhji − ∂ihjj) (16)

it follows that under a conformal transformation we have

M̃ADM = MADM − 1

4πG

∫

∞

ri∂iΩ. (17)

ThereforeMæ is equal to the ADM mass of a conformally
transformed metric,

Mæ = M̃ADM, h̃ab = N c14hab, (18)

using the conformal factor Ω = N c14/2. The question
of whether Mæ is positive thus becomes that of whether
M̃ADM is positive.
As in general relativity, the uu component of the Ein-

stein equation (4) turns out to be an initial value con-
straint equation in the present setting where ua is orthog-
onal to the spatial surface. (This is not a priori obvious,
since the aether stress tensor (9) contains second time
derivatives. The spherical case was treated in detail in
[25], and a general argument is given in [26].) This equa-
tion reads

(3)R+K2 −KabKab = 2(Tæ
ab + 8πGTm

ab)u
aub (19)

where (3)R is the scalar curvature of the spatial metric.
Using the fact that ua is orthogonal to the surface, the
aether stress tensor (9) may be evaluated as

2Tæ
abu

aub = c14(2Daa
a + aaa

a)− c2K
2 − c13KabK

ab,
(20)

where Da is the covariant derivative with respect to the
spatial metric. On substituting equation (20) into equa-
tion (19) one finds

(3)R = 16πGρ+ c14(2Daa
a + aaa

a)

+ (1 − c13)KabK
ab − (1 + c2)K

2, (21)

where ρ = Tm
abu

aub is the matter energy density.

POSITIVE ENERGY THEOREM

Now if ρ ≥ 0 and K = 0, then in ordinary general rela-
tivity (c1,2,3,4 = 0) this implies (3)R ≥ 0, so the theorem
of Schoen and Yau (SY) [17] implies that the ADM en-
ergy is positive. In Einstein-aether theory, provided c14
and 1−c13 are positive, the aaa

a and KabK
ab terms con-

tribute positively, but the term Daa
a has indefinite sign.

Thus, we cannot expect a definite sign for the ADMmass.
However, recall that it is the aether mass Mæ (15) that
is the physical mass of the spacetime, and Mæ is equal
to the ADM mass of a conformally transformed metric
(18).
Remarkably, precisely the same conformal transforma-

tion that yieldsMæ = M̃ADM removes the indefinite term
Daa

a of (21). To see this note that the Ricci scalar of
h̃ab = Ω2hab is related to (3)R by

(3)R̃ = Ω−2
(

(3)R− 4DaDa lnΩ− 2(Da lnΩ)(Da lnΩ)
)

.

(22)
With the conformal factor Ω = N c14/2 we have Da lnΩ =
(c14/2)aa, so (21) and (22) together yield

(3)R̃ = N−c14
(

16πGρ+ c14(1− c14/2)aaa
a

+ (1− c13)KabK
ab − (1 + c2)K

2
)

. (23)

The result of SY thus implies that the ADM energy of
h̃ab is positive, and therefore the aether mass Mæ of hab

is positive, provided ρ ≥ 0, K = 0, 0 ≤ c14 ≤ 2, and
c13 ≤ 1.
These inequalities on c1,2,3,4 are required by stability

and positive energy of the linearized theory. What we
have found here is that they also suffice to imply posi-
tive energy of hypersurface orthogonal configurations on
maximal slices of the fully nonlinear theory.
The SY theorem holds when the spatial manifold has

any number of asymptotically flat “ends”. This provides
a way to extend the result to the case when the spatial
metric at a moment of time symmetry has a minimal
surface. One can just smoothly join a second copy of
the space to itself along the minimal surface, thus ob-
taining a space, without the minimal surface, to which
the theorem applies for each end. Thus the mass of the
spherical static vacuum solution, which possesses a min-
imal 2-sphere with a singularity inside, must be positive,
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as indeed it was found to be by explicit construction[21].
This is an instructive example, since the aether energy
density is negative everywhere in the solution.
We now consider how the above result can be gener-

alized. One such generalization is to remove the condi-
tion that K = 0. For general relativity this was done
by Schoen and Yau[18] using a technique that essentially
reduced the problem to one covered by their first proof
(but required the dominant energy condition, which is
stronger than the condition ρ > 0). We expect that the
method of [18] can also be used for ae-theory and there-
fore that the condition that the slice be maximal can be
removed. If so, the theorem could be extended to cover
in particular time dependent spherical solutions with R3

topology, and possibly spherical black holes[27, 28].
More generally, one might hope to remove the condi-

tion that the aether vector field is hypersurface orthogo-
nal (this condition always holds in Hořava gravity). Since
the positive mass theorem is essentially a property of the
constraint equations, to find a general positive mass the-
orem, one would have to examine the general constraint
equations in ae-theory. These equations were first writ-
ten in [29] using a result from [30] (see also [26] for a
different derivation). They are complicated, so it might
be better to start with a simple sub-case, such as that of
a moment of time symmetry, to see whether a positive
energy result could be obtained there.
Finally, it is worth emphasizing that a key step in our

proof of energy positivity was to express the total energy
for ae-theory in terms of the ADM mass of a particular
conformally related spatial metric whose Ricci scalar is
positive under the conditions of the theorem. It is an un-
expected fact that, in the hypersurface orthogonal case,
the same conformal transformation that makes the en-
ergy Mæ equal to the ADM mass M̃ADM removes the
indefinite sign divergence term in the Ricci scalar. This
may be a hint that a similar conformal transformation
could be used to generalize the result.
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[5] P. Hořava, “Quantum Gravity at a Lifshitz Point,” Phys.
Rev. D79, 084008 (2009). [arXiv:0901.3775 [hep-th]].
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aether theory,” Phys. Rev. D81, 101502 (2010).
[arXiv:1001.4823 [hep-th]].

[9] D. Blas, O. Pujolas, S. Sibiryakov, “Models of non-
relativistic quantum gravity: the good, the bad and the
healthy,” JHEP 1104, 018 (2011). [arXiv:1007.3503 [hep-
th]].

[10] C. Eling, “Energy in the Einstein-aether theory,” Phys.
Rev. D 73, 084026 (2006) [arXiv:gr-qc/0507059].

[11] B. Z. Foster, “Noether charges and black hole mechan-
ics in Einstein-aether theory,” Phys. Rev. D 73, 024005
(2006) [arXiv:gr-qc/0509121].

[12] D. Blas, H. Sanctuary, “Gravitational radiation in
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