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We study double-exchange models with itinerantt2g electrons in spinel and pyrochlore crystals. In both cases
the localized spins form a network of corner-sharing tetrahedra. We show that the strong directional dependence
of t2g orbitals leads to unusual Fermi surfaces that induce spin superstructures and noncoplanar orderings for
a weak coupling between itinerant electrons and localized spins. Implications of our results to ZnV2O4 and
Cd2Os2O7 are also discussed.

Orbital degrees of freedom have attracted much attention
due to their crucial role in the stability of many unusual phases
of correlated materials [1]. In particular, the presence ofde-
generate orbitals in frustrated magnets can lift the spin de-
generacy through various spin-orbital interactions. For Mott
insulators with spins residing on a frustrated lattice, such
as triangular or pyrochlore, geometrical constraints prevent
spins from reaching a simple Néel order. The occurrence of
long-range orbital order due to either Jahn-Teller distortion
or orbital exchange reduces the magnetic frustration by creat-
ing disparities between nearest-neighbor (NN) exchange con-
stants and paves the way for magnetic ordering [2, 3].

However, some of the magnetic orders observed in geo-
metrically frustrated compounds are difficult to explain start-
ing from the strongly coupled Mott-insulator regime. For ex-
ample, several vanadium spinels [4–6] exhibit a complicated
magnetic structure with↑↑↓↓ · · · collinear ordering along cer-
tain chains that is very puzzling from the viewpoint of local-
ized spin models. Below we shall provide a simple explana-
tion for the observed spin superstructures based on a double-
exchange (DE) model which takes into account orbital degen-
eracy. The DE model arises naturally for multiband com-
pounds in which a narrow band of localized electrons coex-
ists with a wider band of itinerant electrons. It can also be
viewed as a mean-field approximation to the Hubbard Hamil-
tonian. A well studied case is the DE model with itineranteg
electrons on the cubic lattice [7]. This model has been shown
to describe the rich physics of colossal magnetoresistancein
perovskite manganites [8].

Recently there has been tremendous interest in DE mod-
els on frustrated lattices [9–16]. The Fermi surface geometry
plays a crucial role [11, 16] in the nonlocal effective spin-spin
interaction that results from integrating out the itinerant elec-
trons in the weak-coupling regime. The magnetic structures
stabilized by itinerant electrons are thus often difficult to un-
derstand using short-range spin models. For example, an un-
usual noncoplanar magnetic order, in which spins on different
sublattices point toward the corners of a tetrahedron, is shown
to appear in different coupling regimes and various commen-
surate filling fractions on the triangular lattice [11–14].Re-
cent investigations of DE models on pyrochlore lattice alsore-
veal interesting behaviors such as electronic phase separation
[15] and a complex noncoplanar order [16] at quarter-filling.

FIG. 1: A unit cell of the pyrochlore lattice and the configuration of
local oxygen octahedra in (a) spinel and (b) pyrochlore crystals. The
blue and red balls denote the (B-site) transition-metal andoxygen
ions, respectively.

However, most of these studies ignore the orbital dependence
and consider only isotropic electron hopping.

In this Letter we examine DE models with itinerantt2g
electrons in both spinel and pyrochlore structures with general
formulas AB2O4 and A2B2O7, respectively. In addition to the
itinerant electrons, there are localized magnetic momentsre-
siding on the B-sites of the crystal which form a 3D network of
corner-sharing tetrahedra. These moments are approximated
by classical vectors under the assumption that the ferromag-
netic nature of Hund’s coupling does not lead to strong quan-
tum fluctuations. The O6 octahedron surrounding the B-sites
creates a cubic crystal field which splits thed-levels into the
eg doublet and the lower-energyt2g triplet. The strong de-
pendence of electron hopping on orbital orientation leads to
peculiar Fermi surfaces in both cases. In particular, the elec-
tron subsystem reduces to a set of cross-linking Kondo chains
in spinels. We show that this feature leads to a weak-coupling
instability towards the previously mentioned↑↑↓↓ superstruc-
ture in vanadium spinels. Fermi surface nesting of different
origin leads to noncoplanar all-in-all-out magnetic orderin
pyrochlores, which is a candidate state for the intermediate
insulating phase of Cd2Os2O7.

Frustrated Kondo-chains in spinels. In the spinel structure,
a common quantization axis can be defined fort2g electrons
at all crystal B-sites [Fig. 1(a)]. The shape of thet2g orbitals
is such that the strongest overlap is between the same orbitals
along a particular NN direction, e.g., between twodxy orbitals
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along either a[110] or [11̄0] bonds in thexy plane. Keep-
ing only this dominant term, electrons in a given orbital state
can only hop along the corresponding〈110〉 chain on the py-
rochlore lattice. We thus divide these chains into three types,
yz, zx, andxy, depending on the active orbitals along the
chain. Since the kinetic energy preserves the orbital flavor,
the Hamiltonian is a sum of contributions from different or-
bital sectors:H̄ =

∑

m Hm, where

Hm = −t
∑

〈ij〉‖m

(

c†imαcjmα + h.c.
)

− J̃H
∑

i

Si · sim, (1)

m = xy, yz, zx andsim = 1
2

∑

αβ c
†
imασαβcimβ . Here the

first term describes NN hopping oft2g electrons along a〈110〉
chain of typem; t is the dominatingddσ transfer integral.
c†imα is the creation operator ford-electrons at sitei with or-
bital flavorm = xy, yz, zx and spinα =↑, ↓. The second
term in Eq. (1) describes an effective on-site Hund’s coupling
betweent2g electrons and localized classical spinsSi (with
normalization|Si|=1). Regarding model (1) as a mean-field
approximation for a three-band Hubbard Hamiltonian that has
the same kinetic energy term as̄H , the effective coupling con-
stant isJ̃H = 4(U/9 + 4JH/9)|〈si〉| whereU + JH is the
Coulomb repulsion between two electrons in the same orbital
andJH is the bare Hund’s coupling [17].
H̄ models a collection of ferromagnetic (FM) Kondo chains

coupled together by the local moments. While a classical
Kondo chain is a relatively simple system, the fact that each
spin is shared by three chains with different orbitals introduces
geometric frustration. Numerical methods such as Monte
Carlo (MC) become very inefficient for conventional 3D DE
models because the dimension of the electron Hamiltonian
to be diagonalized for each spin update scales asL3 × L3

for systems with linear sizeL. On the contrary, forH̄ , one
only needs to diagonalize matrices whose dimension scales as
L × L for the three Kondo chains intersecting at the updated
spin. The reduced dimensionality of the problem thus allows
for studying the ground states of̄H with the aid of unbiased
large-scale MC simulations.

We first consider the case with threed-electrons per site.
The electron energy is minimized by placing one electron at
each of the three different 1D bands, giving rise to half-filled
Kondo chains with a Fermi wavevectorkF = π/2l [Fig. 2(c)],
wherel is the NN distance. The two Fermi points are nested
by a commensurate wavevectorq1/2 = 2kF = π/l, leading
to magnetic Néel order in the presence of Hund’s coupling.
However, direct inspection shows that such a collinear Néel
order cannot be simultaneously attained on all chains of the
pyrochlore lattice. Instead, MC simulations onL = 8 lattices
(with 16L3 spins) show that the total energy is minimized by
the noncoplanar all-in-all-out spin order shown in Fig. 2(a).
The magnetic order of each chain consists of FM and stag-
gered components, which are perpendicular to each other. A
similar noncoplanar structure also occurs in pyrochlore com-
pounds, e.g. Ho2Ti2O7, generally known as spin ice [18]. It is
worth noting that while the noncoplanar spins in spin ice are
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FIG. 2: (a) The noncoplanar all-in all-out magnetic order and (b)
collinear spin superstructure with wavevectorQ = (0, 0, 2π/a) in
spinels. Note the↑↑↓↓ · · · order alongyz and xz chains and a
↑↓↑↓ · · · Néel order onxy chains in (b). Panels (c) and (d) show the
corresponding electron band structures of the three 1D chains with
different orbitals. In panel (c) all three types of bands arehalf-filled,
leading to the noncoplanar order in (a) when perturbed by Hund’s
coupling. The filling fractions in (d) are1/2 for xy band and1/4
for bothyz andzx bands. Inclusion ofJH gives rise to the collinear
superstructure in (b).

stabilized by strong single-ion anisotropies, the DE Hamil-
tonianH̄ is rotationally invariant; any global rotation of the
all-in-all-out order leads to another ground state ofH̄ .

The situation is more complicated for transition metals with
two d-electrons per site like the vanadium spinels AV2O4

where A= Zn, Cd, or Mg. In ideal cubic spinel, equal dis-
tribution of electrons among the Kondo chains corresponds
to 1/3 filling fraction. The classical ground state of a single
Kondo chain at1/3-filling has a↑↑↓ magnetic order with a
period of3 l. Again such a simple arrangement of spins is
precluded by geometric frustration. Our numerical minimiza-
tion on large finite systems yields a 3D noncoplanar magnetic
order with wavevectorQ = 2π

a

(

1
3 ,

1
3 , 1

)

, wherea = 2
√
2 l

is the length of a conventional cubic unit cell; the extended
magnetic unit cell contains 108 spins.

Collinear superstructure in vanadium spinels. Instead of
the above complex order which preserves orbital degener-
acy, experiments showed that vanadium spinels undergo a
cubic-to-tetragonal structural transition with lattice constants
c < a = b [4–6]. Contrary to the elongation, which is fa-
vored by a Jahn-Teller ion with twot2g electrons, the observed
tetragonal compression can be understood as originating from
the band Jahn-Teller instability. The lattice distortion results
in a crystal-field splitting of thet2g levels as shown schemat-
ically in Fig. 2(d). With twod-electrons per site, the lower
energyxy orbital is always occupied by one electron in the
intermediate and strong-coupling regimes . By assuming that
the mean-field derivation of Eq.(1) can be extended into the
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intermediate-coupling regime, we obtain a DE Hamiltonian
with S = 1/2 local moments provided by the electron that is
localized in eachxy orbital:

HDE =
∑

m=yz,zx

Hm + JAF

∑

〈ij〉‖xy

Si · Sj . (2)

The lattice distortion also reduces the hopping integral ofxy
electrons providing further justification for the derivation of
Eq. (2). HereJAF is the exchange constant between local-
ized spins along the[110] and [11̄0] chains. As the magnet
is cooled, antiferromagnetic (AFM) spin correlations develop
first along these chains as indeed observed [4]. A long-range
3D magnetic order resulting from interactions between differ-
ent spin chains sets in at a lower temperature [4–6]. However,
the crossing-chain coupling is geometrically frustrated if only
NN spin interactions are taken into account [19, 20].

Here we provide a simple picture of the unusual magnetic
order of these vanadates based on the DE model (2). Be-
cause the otherd electron can occupy eitheryz or zx or-
bitals, the corresponding bands are both 1/4 filled. In pres-
ence of Hund’s coupling,JH , the usual Fermi-point nesting
thus leads to the formation of↑↑↓↓ · · · superstructure with
q1/4 = 2kF = π/2l on bothyz andzx chains. In the weak-
coupling regime, this collinear ordering (same amplitude for
±q1/4) is always more stable than the single-q spiral order be-
cause both wavevectors,q1/4 and−q1/4, are required to gap
the two Fermi points of each chain. The corresponding 3D
collinear magnetic order [Fig. 2(b)] characterized by wavevec-
tor Q = (0, 0, 1) is consistent with the experiments (we shall
from now on express the wavevectors in unit of2π/a for con-
venience). This collinear structure is also free of geometrical
frustration as individual chains are in their respective ground
states simultaneously. The mechanism for the formation of
this magnetic order is similar to the orbitally induced Peierls
instability in the spinel MgTi2O4 [21].

Although the above collinear spin order can also be ex-
plained within a local spin picture, anad hoc third-neighbor
AFM exchange has to be introduced in order to stabilize the
↑↑↓↓ structure alongyz and zx chains [19]. On the other
hand, our approach based on the itinerant DE model provides
a natural explanation for the formation of these superstruc-
tures in absence of orbital order. In addition, recentab ini-
tio calculations and experimental studies indicated that some
vanadium compounds are indeed close to the metal-insulator
transition [22, 23], giving further support to the itinerant pic-
ture adopted here. Although the above conclusion is valid
only for weakJH/t, and is based on a mean-field treatment of
the multi-band Hubbard model, a more exact calculation that
takes into account the electron correlations gives a consistent
result which will be presented elsewhere.

Noncoplanar magnetic order in metallic pyrochlore. We
now turn to DE model with degenerate orbitals on the py-
rochlore structure [Fig. 1(b)]. Our theory provides a plausible
explanation for magnetic ordering and metal-insulator transi-
tion in the pyrochlore oxide Cd2Os2O7. This compound un-
dergoes a continuous metal-insulator transition atTMI ≈ 225

K [24–26]. The resistivity increases by 3 orders of magni-
tude upon cooling belowTMI . The transition is accompanied
by a sharp reduction of magnetic susceptibility, indicating the
occurrence of AFM order [25]. The specific-heat anomaly
at TMI is found to be well described by a mean-field BCS-
type phase transition. The electron activation energy obtained
from resistivity measurements also exhibits a BCS-like behav-
ior nearTMI [25].

These experimental observations justify a mean-field ap-
proach for the metal-insulator and magnetic transition in
Cd2Os2O7. As discussed above, the mean-field approxima-
tion reduces the multiband Hubbard model to the following
DE model:

HMF = −
∑

ij

∑

mn,α

tmn
ij c†imαcjnα − J̃H

∑

i

∑

m

Si · sim. (3)

Here the orbital indexm refers to the quantization axes
of the local crystal fields which are different in the four
nonequivalent crystal B-sites [Fig. 1(b)]. Contrary to the
case of spinels, the orbital flavor is not conserved by the ki-
netic term. To obtain the hopping matrix, we expand the
t2g orbital wavefunction at a given sublattices in the basis

of common coordinates for the cubic pyrochlore:|φ(s)
m 〉 =

asmk|φk〉. The details of the transformation coefficientsasmk

can be found in Ref. [27]. The resulting hopping matrix is
tmn
ss′ =

∑

kl a
s
mk a

s′

nl 〈φk|Ht|φl〉. Here the transfer integral
〈φk|Ht|φl〉 is expressed using the Slater-Koster (SK) param-
eters [28].

We again start by considering only the dominantddσ
hopping in the SK parameters; the calculated tight-binding
spectrum is shown in Fig. 3(a). In the metallic pyrochlore
Cd2Os2O7, the Os5+ ion has threed electrons corresponding
to a half-filled band. The Fermi level lies atǫ = 0 for this fill-
ing fraction and the resultant Fermi ‘surface’ consists of three
lines and four points at the boundary of the Brillouin zone.
The three Fermi lines are diagonals of the square surface at
the zone boundary, while the Fermi points are located at the
high symmetry L-pointkL =

(

1
2 ,

1
2 ,

1
2

)

[Figs. 3(a) and (b)].
Interestingly, this unusual Fermi surface can be nested by

three wavevectorsQ1 = (1, 0, 0), Q2 = (0, 1, 0) andQ3 =
(0, 0, 1). In particular, the Fermi lines are topologically equiv-
alent to three ‘circles’ each of which can be completely nested
by one of theQ vectors [16]. To determine the optimal ground
state we minimize the energy among all the spin orderings for
which the non-interacting system has a divergent susceptibil-
ity. In other words, we introduce a variational amplitude for
the uniform ordering withQ0 = 0 and each wavevectorQi

that leads to perfect nesting of the Fermi surface. Restricted
to this particular set of magnetic structures, our simulated-
annealing minimization yields a noncoplanar spin order char-
acterized by a single wavevectorQ0 = 0; the magnetic unit
cell is the same as the crystal one. Spins on the four inequiv-
alent sites point toward the corners of a tetrahedron. The so-
called all-in-all-out structure shown in Fig. 2(a) is an exam-
ple of the noncoplanar ‘tetrahedral’ order. The correspond-
ing band structure is shown in Fig. 3(c) for Hund’s coupling
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FIG. 3: (a) Band structure of the orbital-dependent tight-binding
model in the pyrochlore crystal structure. At half-filling,the Fermi
level is atǫ = 0. (b) First Brillouin zone of the fcc lattice which is
the underlying Bravais lattice of the pyrochlore crystal. The Fermi
‘surface’ for a half-filled band include three sets of Fermi lines (the
XW segment in (a)) and Fermi points at the L points. (c) Band struc-
ture in the presence of nonzero Hund’s constantJ̃H = 0.05t. (d)
Calculated density of states for zero and nonzero Hund’s coupling.

J̃H = 0.05t. A charge gap opens at the original Fermi en-
ergy, as can also be seen in the calculated density of states
[Fig. 3(d)].

The noncoplanar spin structure obtained above can be
a strong candidate for the magnetic order belowTMI in
Cd2Os2O7. This simpleq = 0 order also preserves the cu-
bic symmetry. Experimentally, the metal-insulator transition
was found to be accompanied by a slight change in unit-cell
volume of less than 0.05%. More importantly, no change in
crystal symmetry was observed belowTMI . Although the ex-
act magnetic structure is yet unclear, theq = 0 noncoplanar
order is consistent with a recentµSR measurement [26]. Inter-
estingly, upon further cooling, an incommensurate spin den-
sity wave discontinuously develops belowT ≈ 150 K [26].
This might indicate the breakdown of mean-field approxima-
tion deep in the insulating phase where strong electron corre-
lations play a predominant role.

In summary, we have studied the DE model witht2g elec-
trons on the pyrochlore lattice. By taking into account the
orbital-dependent hopping, we showed that magnetic proper-
ties of spinels close to the metal-insulator transition canbe
understood using the picture of cross-linking Kondo chains

coupled by localized moments. Our theory provides simple
and elegant explanations for the unusual spin superstructure
observed in several vanadium spinels. We also proposed a
novel noncoplanar ‘tetrahedral’ order for the magnetic insu-
lating phase of the pyrochlore Cd2Os2O7.
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