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We report the first measurements of phonon dispersion curves on the (001) surface of the strong
three-dimensional topological insulator Bi2Se3. The surface phonon measurements were carried out
with the aid of coherent helium beam surface scattering techniques. The results reveal a prominent
signature of the exotic metallic Dirac fermion quasi-particles, including a strong Kohn anomaly.
The signature is manifest in a low energy isotropic convex dispersive surface phonon branch with a
frequency maximum of 1.8 THz, and having a V-shaped minimum at approximately 2kF that defines
the Kohn anomaly. Theoretical analysis attributes this dispersive profile to the renormalization of
the surface phonon excitations by the surface Dirac fermions. The contribution of the Dirac fermions
to this renormalization is derived in terms of a Coulomb-type perturbation model.

PACS numbers: 63.20.D-, 63.20.K-, 68.35.Ja, 68.49.Bc, 73.20.-r

The recent discovery of the new class of materials
coined topological insulators (TIs) [1–5] has attracted
much interest and excitement. Strong TIs have exotic
metallic surface states protected by time-reversal invari-
ance (TRI). The presence of the metallic boundary is
dictated by the recent Z2 classification of TRI insula-
tors into an ordinary insulator class (Z2-even), including
the vacuum, and a topological insulator class (Z2-odd).
Members of each class can be adiabatically converted to
each other, but not into members of the other class [6–
8]. Ordinary and topological phases are separated by
a topological phase transition, where the bulk gap has
to vanish at the transition point. Thus, the ensuing sce-
nario for a strong TI depicts a topological bulk (Z2-odd),
embedded in vacuum (Z2-even), a case which demands
that the boundary (surface) be gapless. This gives rise
to surface states involving massless Dirac fermion quasi-
particles (DFQs) having an odd number of Dirac cones
in the surface Brillouin zone (SBZ). Moreover, the strong
spin-orbit coupling leads to a definite helicity whereby
the spin is locked normal to the wavevector of the elec-
tronic state. A fundamental constraining feature of such
spin-textured surface states is their robustness against
spin-independent scattering, an attribute that protects
them from backscattering and localization [9, 10].

In this paper we address, experimentally and theoret-
ically, a manifestation of the exotic surface DFQs that
has received little attention: their response to surface
phonon excitations, namely surface electron-phonon scat-
tering and the ensuing phonon energy renormalization.
In this work, we employ elastic and inelastic helium atom
surface scattering (HASS) techniques to determine the
surface structure and obtain the surface phonon disper-
sion curves, respectively. It is well established that He
atoms are scattered by the oscillations of the surface elec-

tron density about 2-3 Å away from the first atomic
layer, and thus HASS is very sensitive to phonon-induced
surface charge density (SCD) oscillations, even those in-
duced by subsurface second-layer displacements [11, 12].
Consequently, HASS intensities carry direct information
on the SCD oscillations associated with surface phonons
and ultimately on the surface electron-phonon (e-p) in-
teraction. HASS, therefore, is an ideal technique to in-
vestigate the collective Dirac electron states response to
surface lattice excitations.

Because the family of strong TIs Bi2X3 (X=Se, Te) was
found to have a single Dirac cone with a Dirac point at
the SBZ center [13–17], it has been the focus of ongoing
intense experimental and theoretical studies. Angle- and
spin-resolved photoemission spectroscopy measurements
provided strong evidence of the existence of the linearly
dispersive Dirac cone and the spin texture. Moreover,
scanning-tunneling microscopy confirmed the absence of
backscattering, namely, scattering between states of op-
posite momentum and opposite spin [9, 18]. We selected
to study Bi2Se3 because of its simplicity, its relatively
wide gap of 300 meV, and the rich trove of information
available about its DFQ surface states [19–23].

The (001) Bi2Se3 crystal surface belongs to the p6mm
two-dimensional space group. The corresponding SBZ is
shown in figure 1; with high-symmetry points Γ, M and
K. Extensive elastic and inelastic He scattering mea-
surements of the Bi2Se3(001) surface were carried out
[24]. The processed inelastic data is presented in figure
3 along the Γ-M, Γ-K and K-M directions as orange dots
together with their respective error bars.

In order to interpret and fit the experimental inelastic
data, we carried out phenomenological surface lattice dy-
namical calculations, based on the pseudo-charge model
(PCM) [24–26] and applied to slab geometries contain-
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FIG. 1. The extended surface Brillouin zone, showing high-
symmetry points Γ, M and K. The Γ-M direction lies along
qx, while the Γ-K-M line is traced along qy. The Gis are
surface reciprocal lattice vectors.

ing 30 quintuples. The physical role of the surface DFQ
states in the phonon energy renormalization was subse-
quently studied with the aid of a microscopic model based
on Coulomb-type perturbations. The model was incorpo-
rated in calculations of density-density correlations that
take into account the helicity and linear dispersion of the
surface DFQ states.

The slab calculations were preceded by a bulk calcu-
lation [24] based on PCM and fitted to available Raman
and IR data [27, 28]. To obtain a best-fit to the measured
surface phonon dispersion curves the following changes
to bulk parameter values were made: The surface Se-Bi
force constant was reduced by 25% from its bulk value;
this is a reasonable change since the non-metallic bond-
ing in the two topmost layers is effectively reduced to
allow for the emergence of the metallic electrons. A new
planar force constant involving surface Se-Se ions was
introduced. To account for the metallic deformability
of the surface DFQs we reduced the magnitude of the
pseudocharge-ion coupling constant TS in the topmost
pyramid involving Se and Bi from its bulk value T 1

B by

about ∆TS

T 1

B

=
T 1

B−TS

T 1

B

≃ 13% [24]. Physically, ∆TS ac-

counts for the extra screening provided by the DFQ sur-
face states, which is proportional to the corresponding
Fermi surface density of states, DF ∝ EF ∝ kF . Hence
∆TS ∝ kF .

However, to underscore the significance of the experi-
mental results and their interpretation in terms of PCM
fitting, we start by presenting in figure 2 the surface
phonon dispersions for a model employing the bulk value
of the ion-pseudo-charge coupling parameter at the sur-
face, namely TS = T 1

B = 8.07 N/m [24]. The calculated
surface phonon dispersion curves are presented in figure 2
as black dots, and the colored areas represent the projec-
tion of the bulk bands onto the SBZ. The details of those
bulk bands are discussed in [24]. The important feature

to be noted is the presence of a surface Rayleigh branch
that splits from the edge of the acoustic orange band,
extending from ω = 0 to ω ≃ 3.7 THz. It’s Rayleigh
character is also shown in [24].
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FIG. 2. Calculated surface phonon dispersion curves (black
dots) along the Γ-M and Γ-K directions, for TS = T 1

B = 8.07
N/m, the bulk value. The colored areas represent the pro-
jection of the bulk bands onto the SBZ. The details of those
bulk bands are discussed in [24].
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FIG. 3. Surface phonon dispersion curves along the Γ-M and
Γ-K directions: Experimental data appear as orange dots with
error bars reflecting instrument resolution, while the calcu-
lated dispersions curves, using PCM with TS = 7.05 N/m,
are represented by black dots. The gray background repre-
sents the projection of the bulk bands on the SBZ. The red dot
on Γ at 160 cm−1 represents an experimental surface Raman
mode reported in Ref.[29].

By contrast, the calculated surface phonon dispersion
curves that provide a best-fit for the experimental data,
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correspond to a reduced value of TS of 7.05 N/m. The
calculated surface phonon dispersion curves are shown in
figure 3 as black dots, superimposed on the experimental
data which is displayed as solid orange dots with error
bars. The single red dot at the Γ-point, at about 5 THz,
is a Raman surface frequency reported in [29].
We shall focus our attention on two important obser-

vations regarding figure 3. First, we should discern the
absence of a surface Rayleigh branch in both experimen-
tal and calculated dispersion curves. Second, we observe
the emergence of a “prominent” isotropic parabolic dis-
persion branch centered at the Γ-point with a frequency
of 1.8 THz (7.4 meV); the PCM calculations confirm
that at Γ it has a vertical shear (z) polarization, with
uz
Se/u

z
Bi = 2.8, where uz is the respective ionic displace-

ment. This branch terminates in a V-shaped minimum
located at q ≃ 0.2 Å−1, a value that roughly corresponds
to 2kF of the DFQs, and thus signals the manifestation of
a strong Kohn anomaly [30]. The isotropy of this branch
and its apparent termination at 2kF can be explained by
a scenario involving the DFQ surface states, in partic-
ular their isotropic Fermi surface. In this scenario, the
V-shaped feature marks the boundary between an oper-
ative DFQ screening for q < 2kF , and its suppression
above this value, which is a typical signature of a Kohn
anomaly. Lattice dynamics calculations reveal some bulk
penetration of vertical shear modes for q > 2kF reflect-
ing a diminished role of DFQ screening and more com-
patibility with the insulating bulk. We shall establish
below the intimate link between the dispersive character
of this branch and the surface DFQ states response to
ionic displacements. The polarization and other proper-
ties of the remaining surface phonon dispersive branches
are discussed in [24].
We now briefly describe the microscopic model used

to study the contributions of the surface Dirac electronic
states that define the dispersive character of the promi-
nent phonon branch. Our experimental results demon-
strate that this surface phonon branch is “optical” in
nature, and thus should be derived from a Coulomb-type
perturbative mechanism. Consequently, we construct a
perturbative Hamiltonian describing the interaction of
the surface Dirac electrons with the electric field result-
ing from ionic displacements, namely, a linear coupling
of the lattice ionic displacement to the DFQ density of
the form

Hel−ph =

∫

d2r ρel(r)

N
∑

j=1

λ( r−R
(0)
j ) · uj , (1)

where ρel(r) is the 2-dimensional electron density, and uj

is the displacement of the jth surface ion whose equilib-

rium position is R
(0)
j . λ is a vector accounting for the

position-dependent coupling of the charge density to ionic
displacements. As shown in [24], after second quantiza-
tion, with bq,γ and ck, α being the annihilation operators
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FIG. 4. Intra- and Inter-band transitions of DFQs that
contribute to the renormalization of the prominent surface
phonon branch. q is the phonon wave vector. The red arrows
indicate the spin helicity on the Fermi Surface.

for a surface phonon mode (q, γ) with polarization in-
dex γ and an electron with momentum k and spin α,
respectively, the Hamiltonian takes the form

Hel−ph =
1√
A

∑

α=↑,↓

∑

k

q,γ

gq,γ c
†
k+q, α ck, α Âq,γ , (2)

where Âq,γ ≡ (bq,γ + b†q,γ). The electron-phonon cou-
pling constant is

gq,γ =

√

N~

2MAω
(0)
q,γ

λq · êγ(q) ≡
√

N~

2MAω
(0)
q,γ

λq,γ .

(3)
A is the surface area, N the number of primitive cells in

A, M the ionic mass. ω
(0)
q,γ is the bare phonon frequency

of mode (q, γ) and êγ(q) the corresponding polarization
vector. λq denotes the Fourier transform of λ(r). A de-
tailed derivation given in [24] leads to the Dyson equation

(

~ωq,γ

)2

=
(

~ω(0)
q,γ

)2

+
~
2

MA
|λq|2

Π(q, ωq,γ)

ε(q, ωq,γ)
, (4)

where ωq,γ is the renormalized surface phonon frequency,
and A is the surface primitive cell area. Π and ε are the
polarization and dielectric functions in the random phase
approximation, respectively, expressed in the helicity ba-
sis; the former can be decomposed into two contributions:
one due to intra-band and the other due to inter-band ex-
citations as shown in figure 4:

Π(q, ω) = Πintra(q, ω) + Πinter(q, ω) . (5)

Explicit expressions for Πintra and Πinter are given in [24].
In order to solve (4) self consistently, we need to spec-
ify the momentum dependence of the coupling function
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FIG. 5. Renormalized surface topological phonon dispersion
curve, superimposed on the corresponding experimental data.

λq,γ . We argue that in the range of |q| ≤ 2kF , the ionic
screened potential V (q) has very weak dependence on

q, since 2kF < qTF =
e2 k2

F

4πε0 EF
= 0.5 Å−1 the Thomas-

Fermi wave vector. Moreover, invoking the sagittal-plane
symmetry classification of the surface phonon modes, we
specify the general polarization vector of the even parity
mode as

êγ(q) ⇒ ê⊥(q) ∼ ẑ, ê‖(q) ∼ q̂ . (6)

ê⊥(q) accounts for the vertical shear component (ionic
oscillations in a direction normal to the surface plane)
while ê‖(q) is the longitudinal component. The corre-
sponding coupling constant then reads

λq,γ = λq · êγ(q ) = λq · ê⊥(q ) + λq · ê‖(q )

≡ λ⊥(q) + λ‖(q) . (7)

In view of the near constancy of V (q) for q ≤ 2kF , and
the fact that the electron-phonon coupling involves the
gradient of the screened potential, we write

λq = λ
(0)
⊥ +

|q|
q0

λ
(0)
‖ (8)

where q0 will be appropriately chosen as 2kF . Notice
that at Γ (q = 0) the polarization is pure vertical sheer,
in agreement with the surface symmetry and the PCM.
The Dyson equation now becomes

(~ωq,γ)
2 = (~ω(0)

q,γ)
2+

~
2

MA
(λ⊥)

2

(

1 +
|q|
kF

λ‖

λ⊥

)

Π(q, ωq,γ)

ε(q, ωq,γ)
(9)

to first order in q.
The model depends on two parameters: the bare

phonon frequency and the Fermi wave vector. We

identified the former with the experimental value of
ω(q = 0) = 1.8 THz, where the DFQ response van-
ishes. kF was derived from a sample carrier concentration
of −1.9 × 1019/cm3, obtained from Hall measurements,
which correspond to a Fermi energy of about 300 meV
and a Fermi wavevector of kF = 0.1 Å−1, which is con-
sistent with previous values reported from photoemission

measurements [19, 21, 22]. The coupling parameters λ
(0)
⊥

and λ
(0)
‖ were left as fitting variables. Solutions for ω(q)

were obtained by carrying out the integrals for Π(q, ω),
and solving Eq. (4) iteratively. The calculated best-fit
dispersion curve is shown in figure 5, superimposed on
the experimental data. The agreement is quite good.

The best fit parameters are

~
2

MA
(λ⊥)

2 = 107 (meV)3 · Å2
,

λ‖

λ⊥
= 0.65 . (10)

With ~
2

MA
= 4 × 10−3 meV, we obtain λ⊥ = 50 eV · Å .

This yields a real space value of 3.4 eV/Å, which is quite
reasonable since it falls in the range of typical Coulombic
interactions.

Finally, we demonstrated above that a TI actually
presents a composite system consisting of an “ultra-thin
metallic film” and an underlying insulating substrate. As
such, the phonons in the metallic film can hardly pen-
etrate into the substrate bulk in order to establish an
acoustic Rayleigh branch. However, the unique feature
of this system is that for q > 2kF , as DFQ screening
becomes gradually suppressed, the surface film becomes
almost homogeneous with the underlying substrate, and
the corresponding modes gradually penetrate into the
bulk, ushering the V-shaped dispersion. We designate
this unique behavior as a strong Kohn anomaly. More-
over, we should emphasize here that theoretical model-
ing and analysis of the interaction between the surface
phonons and the DFQs demonstrate that the linear dis-
persion and isotropy of the DFQs are responsible for
the profile of the prominent surface phonon branch for
q ≤ 2kF .
We should note that some recent studies [31, 32] pro-

posed models based on acoustic-phonon perturbations,
derived from the Dirac fermion Hamiltonian, but these
perturbations are too weak to account for the observed
dispersion.
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