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Ş. G. Söyler,1 M. Kiselev,1 N. V. Prokofev,2, 3 and B. V. Svistunov2, 3

1The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151 Trieste, Italy
2Department of Physics, University of Massachusetts, Amherst, MA 01003, USA

3Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia

We establish the full ground state phase diagram of disordered Bose-Hubbard model in two-
dimensions at unity filling factor via quantum Monte Carlo simulations. Similarly to the three-
dimensional case we observe extended superfluid regions persisting up to extremely large values
of disorder and interaction strength which, however, have small superfluid fractions and thus low
transition temperatures. In the vicinity of the superfluid–insulator transition of the pure system,
we observe an unexpectedly weak—almost not resolvable—sensitivity of the critical interaction to
the strength of (weak) disorder.
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Disordered systems keep attracting attention as they
reveal rich and nontrivial physics of interplay between
interaction effects and localization [1, 2]. Bosons are par-
ticularly interesting because non-interacting particles are
always localized in the region of space which corresponds
to the deepest bound state in the disorder potential, i.e.
the limit of weak disorder and weak interactions is sin-
gular. The study of the so called ‘dirty boson problem’
was first prompted by the disappearance of superfluid-
ity of 4He in porous media (vycor) [3]. Other condensed
matter systems of interest include thin superconducting
films [4], Josephson junction arrays [5], superfluid helium
films on substrates [6], etc.

More recently, the realization of ultracold atoms in op-
tical lattices [7, 8] paved the road to studies of strongly
correlated systems in a controlled way, and to using them
as emulators for condensed matter models. In the pres-
ence of disorder, most cold atomic systems are described
by the Bose-Hubbard model (BHM) with disorder in the
on-site potential. Control over disorder has been imple-
mented in optical lattices in several ways such as using
bicromatic lattices, a laser speckle field, and by loading a
second (heavy) component into the system [9–13]. Both
weakly interacting and strongly interacting limits have
been realized in these experiments.

Considerable amount of theoretical effort has been ded-
icated in the past to understanding the phases and phase
transitions in the system [14–25]. In addition to the
Mott insulator (MI) and superfluid (SF) states present in
the pure case, disordered ground states feature a third,
non-conducting but compressible, Bose glass (BG) phase.
Whether there exist a direct transition between the MI
and SF states has been the subject of a long debate.
Fisher et al. [2] argued that such a transition is unlikely,
i.e. for finite disorder MI and SF phases are always sepa-
rated by BG, but alternative possibilities were not ruled
out rigorously. This resulted in a controversy since, on
one hand, mean-field type theories are inadequate in cap-
turing the physics of rare statistical fluctuations driving
the MI-BG transition, and, on the other hand, various

numerical techniques are severely limited by finite size
effects [16, 18, 19]. The controversy has been resolved in
Refs. [26, 27] which proved the theorem of inclusions and
concluded that all transitions between the fully gapped
and gapless ground states in disordered systems are of
the Griffiths type and thus the resulting gapless phase
is insulating. Moreover, the original conjecture [2, 14]
that the MI-BG boundary corresponds to the disorder
bound, ∆, equal to the MI gap in a pure system turns
out to be a rigorous result by the same theorem. Here it
is important that disorder is bounded since otherwise the
MI phase is eliminated altogether. [We note that proofs
based on rare statistical fluctuations are valid only in
the thermodynamic limit; in finite experimental systems
phase boundaries are replaced by crossovers, including
complete elimination of the BG state for weak enough
disorder.]

Theorems fix the overall topology of the phase diagram
but say nothing about its shape and quantitative fea-
tures. For example, we are not aware of any rigorous ar-
gument in dimensions d > 1 for why weak disorder would
favor SF versus insulating states in the vicinity of the MI
transition. By simulations it was found to be the case in
d = 3; what happens in d = 2 remains unanswered. This
question is particularly interesting because all existing
considerations regarding relevance of weak disorder (see
also below) point out that d = 2 is a special dimension.
In the present work we study a two-dimensional disor-
dered BHM and present the first accurate results for its
ground state phase diagram at unity filling factor [28].
The numerical method of solution is based on the lattice
path integral Monte Carlo using Worm algorithm [30].
We pay special attention to the critical behavior of the
system in the limit of weak disorder in proximity to the
SF-MI transition in the homogeneous system.

The disordered BHM reads as:

H = −t
∑
〈ij〉

a†iaj +
U

2

∑
i

ni(ni − 1) +
∑
i

(εi−µ)ni , (1)

where a†i (ai) is the boson creation(annihilation) opera-
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FIG. 1: (Color online) Finite-size scaling of winding number
fluctuations as a function of disorder bound ∆ for interaction
strength U/t = 22 and dynamical exponent z = 2. Data are
shown for β = (L/4)2.

tor, 〈ij〉 denotes nearest neighbor sites, and n = a†iai is
the density operator. In what follows we use the hopping
matrix element t as a unit of energy, U is the on-site
repulsion between atoms, and µ is the chemical poten-
tial. Random disorder, εi, is uniformly distributed on the
[−∆,∆] interval with no correlations between the sites of
a square lattice. In our numerical study, we work at fill-
ing factor n = 1 and, for definiteness, choose the chemical
potential in the middle of the MI gap when appropriate,
i.e. gaps for creating particle and hole excitation in the
MI phase are both equal to Eg/2.

To construct the phase diagram we employ standard
procedures. The SF-BG transition lines are determined
from finite size scaling of the superfluid stiffness calcu-
lated from the statistics of winding numbers squared,
〈W 2〉, using formula Λs = 〈W 2〉L2−d/Td [31]. Accord-
ing to the theorem of inclusions, the BG-MI line is de-
termined by the ∆ = Eg/2 criterion (recall, that it is
impossible to detect this boundary directly in finite-size
simulations).

Figure 1 shows 〈W 2〉/2 vs ∆/t curves at U/t = 22
for different system sizes averaged over 500 disorder real-
izations with error bars dominated by sample-to-sample
fluctuations. In this case we scale space and imaginary
time dimensions according to the dynamical critical ex-
ponent z = 2 predicted in Ref. [2] (strictly speaking,
in the thermodynamic limit any value of z > 0 can
be used for determination of the critical point). Barely
measurable flow of intersection points with the system
size allows us to estimate transition points with rela-
tively high accuracy. From the data in Fig. 1 we deduce
∆c/t = 7.76 ± 0.06. The full ground state phase dia-
gram in the (U,∆) plane is shown in Fig. 2. The bound-
ary between the MI and BG phases at ∆/t = Eg/2 was
constructed using data for the MI gap in a pure system
calculated in Ref. [32].

FIG. 2: (Color online). Zero temperature phase diagram of
the two-dimensional BHM at filling factor n = 1. The MI-
BG transition at ∆ = Eg/2 is obtained using gap data from
Ref. [32]. The green triangle point on the SF-BG boundary
was obtained in Ref. [29]. The dashed line is the square-root
law predicted for the ∆, U → 0 limit in Ref. [33]

Reentrant behavior, similar to the one observed in
d = 1 and d = 3 phase diagrams, is also present in
d = 2 in agreement with earlier observations at finite
disorder [16, 29]. In compliance with the theorem of in-
clusions, BG always separates SF and MI states which
meet only at the MI-SF transition point of the clean sys-
tem at Uc/t = 16.7424(5). As we move away in the verti-
cal direction, weak disorder always works in favor of the
SF phase shifting the transition points to the right—this
appears to be a common behavior in all physical dimen-
sions. The mechanism, however, is not universal and only
in d = 1 it can be explained theoretically by the destruc-
tive interference of the vortex instanton contributions to
the partition function [20].

In the weak interaction limit, U → 0, the transition
line goes to zero with an infinite slope, ∆c ∝

√
U [33]. In

this region, interaction is very efficient in screening deep
potential wells and stabilizing superfluidity. Numerically,
it is extremely hard to study [34] and we were not able
to clearly resolve the square-root law though our data
provide an estimate for the pre-factor in ∆ ≈ 20

√
Ut.

Remarkably, superfluidity persists up to extremely
large values of disorder and interactions. For interme-
diate interactions, superfluidity survives when disorder
potential is about ten times larger than the bandwidth,
∆/t = 72. Likewise, the superfluid ‘finger’ at ∆/t = 30
extends all the way to U/t = 49. However, super-
fluid properties of the system in the large disorder and
large interaction limits are not robust. In Figs. 3 and
4 we plot the superfluid stiffness calculated along two
representative cuts of the phase diagram, one at fixed
interaction U/t = 26 and the other at fixed disorder
∆/t = 35. Small values of Λs for ∆ > 30t ensure small
superfluid-normal transition temperatures according to
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FIG. 3: Superfluid stiffness as a function of disorder bound
∆ at fixed interaction strength, U/t = 26, and temperature,
T/t = 0.042, for system size L = 12× 12.

the Nelson-Kosterlitz relation Tc/t = (π/2)Λs(Tc). Note
that Figs. 3 and 4 can be used to determine upper bounds
on Tc because Λs(Tc) < Λs(0). For example, numerical
simulations of the SF-normal transition temperature at
U/t = 26 and ∆/t = 35 yielded Tc/t = 0.07±0.012 below
the upper bound estimate Tc/t = 0.2.

Low transition temperatures have important conse-
quences for current cold-atom experiments. Though the
(U/t = 26,∆/t = 35) point is chosen to be far from the
edges of the SF-BG boundaries in Fig. 2, the value of Tc
is well below typical experimental temperatures which
are still at (or above) the tunneling amplitude t. Thus
observing the ground state phase diagram remains a chal-
lenging task. In current experimental setups, only a small
fraction of the superfluid region will survive finite tem-
perature effects. Let us now focus on the weak disorder
case at the tip of the Mott lobe in the pure system. Sim-
ilar to one-dimensional case (see Refs [2, 20, 35]), the
qualitative aspects of the effect of disorder can be de-
scribed within Popov’s superfluid hydrodynamic action
(~ = 1)

S =

∫
d~r

∫
dτ

{
i〈n〉Φ̇ +

κ

2
Φ̇2 +

Λs
2

[∇Φ]2
}
, (2)

where κ is the compressibility, τ is the imaginary time,
Φ(~r, τ) is the superfluid phase field, and 〈n(~r)〉 is the av-
erage density at the lattice point ~r (the integral over d~r is
understood as a discrete lattice sum, and the gradient as
a finite difference). Since the first term contains full time
derivative of the phase variable, we observe that (i) the
integral

∫
Φ̇ dτ can be only a multiple of 2π, (ii) in a pure

system with 〈n(~r)〉 = 1 this term is irrelevant and the ef-
fective action (after rescaling of the time variable with
the sound velocity) is that of the classical 3D XY-model,
(iii) in a disordered system this term is of any importance
(not a multiple of 2π) only in the presence of topologi-
cal defects in the phase field. More precisely, its value is
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FIG. 4: Superfluid stiffness as a function of interaction
strength U/t at fixed disorder bound, ∆/t = 35, and tem-
perature, T/t = 0.042, for system size L = 12× 12.

purely imaginary and for the (2+1)-dimensional space-
time vortex-loop with projected (on the space plane) d-
dimensional algebraic area A is given by a simple formula

Sloop = 2πi

∫
A

d~r 〈δn(~r)〉 , (3)

where δn(~r) = n(~r) − 1 is the local density fluctuation
about the mean value.

The nature of the SF-MI transition in a clean system
described by the 3D XY-model is linked to the prolifer-
ation of large vortex-loop instantons which disorder the
phase field. In the absence/irelevance of the phase term
all vortex-loop instantons act in ‘unison’, in other words
their contributions interfere constructively in the parti-
tion function. This is no longer the case in the disordered
system since an area integral in Eq. (3) is now a ran-
dom variable. When random vortex phases become large,
their contributions to the partition function cancel each
other making them inefficient in destroying phase coher-
ence across the system. Let us estimate the typical phase
of a vortex-loop of size ξ where ξ is the correlation length.
It is proportional to the total particle number fluctuation
in the area A ∼ ξ2 in response to the random chemical
potential fluctuation in this region, δµA = A−1

∫
εrd

2r,
which, by the central limit theorem, scales as ∆/ξ. Using
system’s compressibility, κ = ∂n/∂µ, we then find

ImSloop ∼ 2πAκ∆/ξ ∼ 2πξκ∆ . (4)

As long as disorder remains perturbative (i.e. Sloop � 1),
we have ξ ∼ (1 − Uc(∆)/U)−ν where ν = 0.67155 is
the correlation length exponent and Uc(∆) is the critical
interaction for a given ∆. Equation (4) extrapolated to
ImSloop ∼ 1 predicts how close U should be to Uc(∆)
to start seeing relevance of disorder, provided the system
size is exponentially large, L > ξ ∝ exp(U/∆), see Eq. (5)
below.
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FIG. 5: (Color online). Phase diagram in the vicinity of the
Mott lobe for weak disorder. Note extremely weak depen-
dence of the SF-BG critical point on disorder for small ∆.

One might think that Eq. (4) implies linear scaling
of phase with the correlation length. However, in the
vicinity of the particle-hole symmetric SF-MI transition
point, the renormalized compressibility itself vanishes as
κ ∼ 1/Uξ, canceling dependence on ξ in Eq. (4). It means
that each length-scale contributes equally to the vortex-
loop phase, i.e. the final dependence is only logarithmic

ImSloop ∝ (∆/U) ln ξ . (5)

We thus conclude that d = 2 is the ‘critical dimen-
sion’ starting from which the relevance of weak disorder
can not be seen by assuming that compressibility follows
the Josephson relation, κ ∝ ξ1−d, i.e. the shape of the
critical line Uc(∆) is determined by the non-universal
microscopic physics. [Finite κ in Eq. (4) clearly implies
relevance of disorder on length scales > (κ∆)−2/d.] This
is to be contrasted to d = 1 where relevance of weak
disorder defines the critical line, see [20].

In Fig. 5 we show the phase diagram close to the tip
of the Mott lobe. Critical points were determined using
finite-size scaling with z = 1. Clearly, critical points for
the SF-BG transition are at disorder values much larger
than the Eg/2 boundary for the MI phase. Surprisingly
enough, the first data points for the SF-BG line are in-
distinguishable from the critical value in the clean sys-
tem Uc/t = 16.7424(5) within the error bars. This was
unfortunate because even though critical points were de-
termined with accuracy better than four digits we still
did not have enough parameter range to make an unam-
biguous case for the form of the line Uc(∆).

Summarizing, we have presented the full ground state
phase diagram of the disordered BHM at unity filling fac-
tor. Interestingly, while the superfluid phase is remark-
ably stable against strong interactions and disorder it is
rather fragile with regards to finite temperature effects.
Our numerical data feature an essentially vertical SF-BG
line for weak disorder; understanding physics behind this

phenomenon in d ≥ 2 remains a challenge.
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