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                                                        Abstract 
 
The dynamics of transport at the edge of magnetized plasmas is deterministic chaos. The 
connection is made by a previous survey [M. A. Pedrosa et al., Phys. Rev. Lett. 82, 3621 
(1999)] of measurements of fluctuations that is shown to exhibit power spectra with 
exponential frequency dependence over a broad range, which is the signature of 
deterministic chaos.  The exponential character arises from Lorentzian pulses. The results 
suggest that the generalization to complex times used in studies of deterministic chaos is 
a representation of Lorentzian pulses emerging from the chaotic dynamics.    
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Although it is not widely appreciated by the plasma science community, since the early 
1980’s, it has been recognized by researchers in several disciplines [1-3] that an intrinsic 
and observable signature of systems whose dynamics exhibits deterministic chaos [4] is a 
fluctuation power spectrum with an exponential frequency dependence, i.e., 
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P "( )# exp $2"%( ), where τ is a time constant associated with the underlying processes. 
The temporal signals associated with these spectra are intermittent or ‘spiky’, consisting 
of a series of apparently randomly occurring ‘spikes’ or pulses.  Deterministic chaos is a 
nonlinear dynamical state that arises when the amplitude of a few collective coherent 
modes is sufficiently large to induce chaotic trajectories in the associated phase-space. 
Exponential spectra have been identified in widely different systems including the 
fluctuation in sunspot number [5], CO2 chaotic forcing of ice ages [6], the unipolar 
injection hydrodynamic instability [7], turbulence in neurons related to Parkinson’s 
disease [8], weakly turbulent Couette-Taylor flows [9, 10], and Rayleigh-Bénard 
convection [11], among others. In magnetized plasmas chaotic dynamics can arise when 
unstable drift-waves driven by the pressure gradients exceed a threshold value [12, 13].  
The potential fields of the drift waves result in ExB plasma flows that are necessarily 
perpendicular to the confining magnetic field.  The phase-space of such a system is two-
dimensional. 
 
The association of exponential spectra with deterministic chaos has been firmly 
established through detailed experiments and numerical solutions of a wide class of 
nonlinear models [9-12], but, surprisingly, at the present time, there is no rigorous 
mathematical proof that provides a direct link between these two features. It has been 
identified by researchers [1, 15] who have examined the mathematical structure of this 
challenging problem that the proof requires the analytic continuation of the underlying 
equations to the complex time domain. The purpose of the generalization is to extract a 
singularity that lies near the real axis that allows the evaluation of the Fourier transform. 
The separation between the pole and the real axis is believed to determine the value of the 
parameter 
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" . The procedure works technically, but it fails to provide a connection to an 
underlying physical process. This Letter emphasizes that recent insight into this issue has 
emerged from transport experiments in magnetized plasmas, both in a basic linear device 
[16, 17] and in a stellarator, toroidal configuration [18]. In these completely different 
experiments, fluctuations in the plasma pressure are observed to follow an exponential 
frequency dependence for frequencies below the ion cyclotron frequency. More 
importantly, the origin of the observed exponential behavior in the spectrum is due to the 
fact that the pulses occurring in the intermittent time signals have a Lorentzian functional 
form. The temporal shape of an individual pulse is 
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where A is the peak amplitude of a pulse centered at time 

! 

t
0
 and having width 
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" . The 
second form of the Lorentzian given in Eq. (1) explicitly displays the pair of conjugate 
poles at t = t0 ± iτ that gives rise to the exponential nature of the power spectrum.  The 
power spectrum of a series of N pulses is 
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This spectrum is a sum over the residues of a collection of single poles in the complex 
time plane and is exponential if the distribution of pulse widths, τn, is sufficiently narrow. 
 
In the plasma experiments, time signals are typically measured at a fixed spatial location 
by probes and are a manifestation of the effects of spatially-extended structures, 
generated by deterministic chaos, sweeping past the probes. The underlying chaos is 
associated with coherent drift-waves driven unstable by the pressure gradients. A 
modeling study [19] has shown that retaining two individual modes is sufficient to result 
in the generation of Lorentzian pulses when the amplitude of the modes exceeds a 
threshold value. The threshold corresponds to the ExB velocity imparted by the modes 
exceeding the phase velocity of the modes (approximately the diamagnetic drift velocity). 
The experimental observations [16-18] and the model results [19] also show that the 
value of the parameter τ is a fraction (1/4 to 1/5) of the wave period of the drift-modes. 
 
Since the Lorentzian pulses are typically embedded in the coherent fluctuations or other 
plasma flows, they can display distortions that may hide their true identity when 
individually sampled in a time series. However, Lorentzian pulses exhibit a robust 
contribution to the formation of an exponential spectrum. Only systems that exhibit 
pulses with a shape that closely approximates a Lorentzian, and that have a relatively 
narrow distribution of pulse widths, can result in an exponential spectrum. To provide a 
better appreciation for this important property, an example of various pulse shapes is 
shown in Fig. 1. A general pulse shape can be generated from the inverse Fourier 
transform of the function [20] 
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 with sgn(ω) = -1, ω < 0; sgn(ω) = 0, ω = 0 and sgn(ω) = 1, ω > 0.The function   
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contains four parameters that characterize the pulse: α, the shape parameter [0< α ≤2]; s, 
the skewness [-1 ≤ s  ≤ 1]; τ, the width [0  ≤ 
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"  ≤ ∞], and t0, the displacement [-∞ ≤ t0 ≤ 
∞].  The shape parameter, α, allows for a continuous variation in pulse shape from a 
Gaussian (

! 

" = 2) to a Lorentzian (

! 

" = 1). The corresponding frequency power spectra 
associated with the pulses are shown in Fig. 2. Figure 2a displays the results in the 
popular log-log format used in turbulence studies motivated by Kolmogorov’s influential 
work [21] that predicts a power-law dependence, and Fig. 2b displays the same results in 
a log-linear format that sensitively identifies an exponential spectrum because it is a 
simple straight line. The choice of the specific time scale in Fig. 1 is for comparison to 
the experimental survey by Pedrosa et al. [22] shown later.  
 



It is seen from Fig. 2 that the spectrum of a Lorentzian pulse extends over a larger 
frequency range than that of a corresponding Gaussian pulse or even an intermediate 
pulse (
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" = 1.5), as expected. But the log-log format, because of its large frequency-scale 
compression, does not exhibit a significantly different qualitative behavior in the power 
spectra of the three pulse shapes. In fact, in this presentation it is temping to interpret a 
purely exponential spectrum (
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" = 1) as being a sequence of power laws with varying 
indices, as is often concluded in turbulence studies that attempt to interpret the 
phenomena in terms of scalings motivated by Kolmogorov’s work [21] or other 
turbulence models. For example, in the survey by Pedrosa et al. [22] the log-log format 
was employed, and spectral indices of -1, and -3 were identified as present in different 
frequency bands. It was then suggested that multifractal scaling may be needed to explain 
the results. In contrast, the log-linear display shown in Fig. 2 illustrates the fundamental 
distinction between the linear shape of the power spectrum of a Lorentzian pulse and the 
curved shape of the power spectra produced by other pulse shapes. Pulses with 
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" > 1 
exhibit a characteristic concave curvature (i.e., downward, towards lower values) in the 
low-frequency domain.  
 
At a fixed value of the shape parameter, α, the temporal symmetry of a pulse is 
determined by the skewness parameter, s.  Symmetric pulses have zero skewness, s = 0. 
The solid curve in Fig. 3a shows an example of a Lorentzian pulse with a skewness value 
of s = -0.8, which results in a pulse shape with a pronounced ‘leading edge’, a feature 
emphasized by some plasma researchers [23, 24, 25].  It is important to note, however, 
that the skewness of a pulse does not alter the shape of the power spectrum.  From Eq. (3) 
it is clear the skewness parameter only appears as a phase term in the Fourier transform, 
and thus does not appear in the power spectrum (the square of the absolute value of the 
Fourier transform).  Indeed, skewed pulses are routinely observed in the time signals 
from plasma probes.  Figure 3b presents an example of a skewed pulse observed in the 
experiments of Pace, et al. [16] (solid curve), fit with a skewed Lorentzian pulse (dashed 
curve) obtained from the inverse Fourier transform of the expression given in Eq. (3).  A 
very good fit is obtained to the experimentally observed pulse with the parameter values 
(α, s, τ, t0) = (1.0, -.45, 8.0 µs, 0.0).  The Fourier transform of the skewed pulse, however, 
is a straight line in a log-linear plot. 
 
To concretely illustrate the connection between deterministic chaos and exponential 
spectra in a magnetized plasma, Fig. 4 presents the results of a simple, two-mode 
(azimuthal mode numbers m = 1 and m = 6) model of the relaxation of a magnetized 
temperature filament of the type investigated by Pace et al. [16, 17]. The amplitude of the 
m = 1 mode is increased adiabatically before ramping up the m = 6 mode amplitude.  The 
interaction of the two modes leads to chaotic Lagrangian orbits once an amplitude 
threshold is exceeded. The top panel shows the complex, but spatially connected 
structures formed when the m = 1 mode is at full amplitude and the m = 6 mode 
amplitude is just below the threshold for chaotic behavior. The region of elevated 
temperature near the center (orange color) corresponds to orbits in the ‘island of stability’ 
associated with the m = 1 mode.  The middle panel shows the fine-scale spatial structures 
that develop after the onset of chaos.  The bottom panel is the frequency spectrum of the 
temperature fluctuations at a time corresponding to the middle panel, showing a clear 



exponential dependence in a log-linear display, as highlighted by the red dashes. The 
protruding peaks correspond to the fundamental and first few harmonics of the coherent 
modes driving the chaos. 
 
The extensive survey undertaken by Pedrosa et al. [22] provides a major, worldwide 
synthesis of the observed behavior of fluctuations at the edge of magnetically confined 
plasmas. The survey focuses on toroidal devices that explore fusion physics. The breadth 
of the devices considered is significant; it includes tokamaks and stellarators whose 
parameters range in magnetic field strength from 0.67 to 2.6 T and plasma densities from 
0.5 to 3x1019 m-3. The study by Pedrosa et al. [22] attempted to identify a universal 
frequency dependence for edge fluctuations. The empirical search sought to identify 
dependencies having a functional form given by their Eq. (2), i.e., 
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where 
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"  is a constant that is device dependent. By adjusting the value of 
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"  it was 
demonstrated in Figs. 3a-c of Ref. 22 that the power spectra of all the devices exhibited 
identical behavior, thus indicating that they arise from a universal process. As is typical 
of such studies, the spectra were displayed in log-log format, and, although the evidence 
for universality is quite impressive, it was not possible to deduce the sought-after 
function 

! 

g("#). Motivated by the recent insight into exponential spectra previously 
discussed, it is of interest to test if the function g is exponential. Figure 5 provides the 
desired comparison. The black figures are the identical figures 3a-c in Ref. 22. They 
correspond to the spectra of fluctuations in ion saturation current (a), floating potential 
(b), and radial turbulent particle flux (c). The red curves superimposed on the data 
surveys is essentially the same Lorentzian spectrum shown earlier in Fig. 2a; it 
corresponds to a Lorentzian pulse whose width is 
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" = 1 
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µs , i.e., the curve labeled 
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" = 1 in 
Fig. 1.  The same curve is used in all three panels. Remarkably, it is seen that the 
Lorentzian spectrum closely matches all three curves in the survey over a significant 
range of low frequencies. The match with the turbulent flux (c) is nearly perfect. The 
small deviation in the high-frequency region of panel (a), where the absolute signal is 
quite small, could be related to the value of the noise-floor level. From this comparison it 
is evident that the desired universal function that summarizes the well-established 
universal behavior is an exponential. 
 
Compelled by the breadth and universality of the data survey of Pedrosa et al. [22], and 
by the independent observation of exponential spectra in controlled studies in a linear 
device [15, 16], it is well warranted to conclude that, in general, the fluctuation spectrum 
at the edge of magnetically confined plasmas is exponential. Furthermore, because 
exponential spectra are widely accepted as a signature of deterministic chaos, it is 
appropriate to deduce that deterministic chaos regulates the underlying dynamics at the 
edge of magnetically confined plasmas. Turning these results to a broader perspective, 
because Lorentzian pulses have been identified to be the underlying physical cause of the 
exponential spectrum, in both linear [15, 16] and toroidal geometry [17], this plasma-
derived information suggests that the mathematical generalization to complex times used 
in studies [1, 15] of deterministic chaos is a representation of Lorentzian pulses emerging 
from the chaotic dynamics.  Specifically, the poles in the complex-time plane associated 
with deterministic chaos come in complex conjugate pairs and power spectra arising from 
deterministic chaos have the general form given in Eq. (2).  Although the connection to 



Lorentzian pulses has not been made in deterministic-chaos experiments in fluid systems, 
their presence can be seen in published time signals, such as Fig. 2 of Ref. [9]. 
 
In summary, the generality of exponential spectra in magnetized plasmas has been 
established by extensive and detailed experimental evidence. The underlying connections 
to deterministic chaos warrant incorporation into contemporary theoretical developments.  
 
The work of J.E.M and G.J.M. is performed under the auspices of the BaPSF at UCLA 
which is jointly supported by a DOE-NSF cooperative agreement, and by DOE grant 
SC0004663.  The authors thank Prof. C. Hidalgo for supplying the original version of 
Fig. 3 of [22]. 
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Figure Captions 
 
Fig. 1.   Examples of pulse shapes for three values of the parameter 
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"  in Eq (3). Gaussian 
is α = 2.0, Lorentzian is α =1.0 and intermediate shape α = 1.5.  The ‘tails’ of the pulses 
become more prominent as α decreases from 2.0 to 1.0.   All pulses have the same width, 
τ = 1.0 µs. 
 
Fig. 2. a) Power spectra of the pulse shapes in Fig. 1 in a log-log format. b) Same spectra 
in a log-linear format.  The exponential spectrum is easily identified as a straight line in 
the log-linear format. 
 
Fig. 3.  a) Skewed Lorentzian pulse (solid curve) with a pronounced ‘leading edge’ (s = -
0.8) is compared to a symmetric pulse (dashed curve) with the same width, 8 µs. b) An 
experimentally observed pulse (solid line) is compared to a pulse generated from the 
inverse Fourier transform of   

! 

˜ L (") (dashed curve). 
 
Fig. 4.  Results of a deterministic chaos model.  Top:  temperature contours in a filament 
just before the onset of chaotic behavior. Middle: contours after the onset of chaos. 
Bottom: power spectrum of temperature fluctuations corresponding to the middle panel. 
 
Fig. 5. Power spectra of fluctuations in ion saturation current (a), floating potential (b) 
and turbulent flux (c) from the survey of Pedrosa, et al. [22] (black) is compared to the 
power spectrum of a single Lorentzian pulse with width, τ = 1 µs (red).  The power 
spectra are clearly exponential for frequencies below 400 kHz, and the turbulent flux 
spectra is exponential over nearly the entire frequency range displayed. 
 
 
 
 
 












