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We propose an approach to approximate the exchange and correlation (XC) term in density
functional theory. The XC potential is considered as an electrostatic potential, generated by a
fictitious XC density, which is in turn a functional of the electronic density. We apply the approach
to develop a correction scheme that fixes the asymptotic behavior of any approximated XC potential
for finite systems. Additionally, the correction procedure gives the value of the XC derivative
discontinuity; therefore it can directly predict the fundamental gap as a ground-state property.
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An important and long standing topic in density func-
tional theory (DFT) [1] is the prediction of the funda-
mental gap [2, 3] Eg, which is defined as the difference of
the ionization energy and the electron affinity. In DFT,
the gap is not simply the difference between the Kohn-
Sham (KS) eigenvalues of the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular or-
bital (LUMO). Instead, it is given by [4]

Eg = ǫLUMO − ǫHOMO +∆xc , (1)

where ǫHOMO and ǫLUMO are the HOMO and LUMO
KS eigenvalues, respectively, and ∆xc is the derivative
discontinuity (DD) of the XC energy with respect to the
particle number N,

∆xc = Vxc(N
+)− Vxc(N

−) . (2)

For the local density approximation (LDA) and many
generalized gradient approximations (GGA), the DD is
zero [5]. In these approximations the predicted gap is
effectively the KS gap, which severely underestimates the
experimental value. Even for

XC energy functionals that are discontinuous with the
particle number, the DD is not simple to calculate [3, 6–
8]. Alternatively, XC approximations have been pro-
posed where the KS gap is directly used to predict the
gap [9] avoiding the calculation of the DD.

In this article, we present an XC potential for finite
systems that, with similar computational cost as a LDA
or GGA calculation, has the right asymptotic limit for
low density regions and directly provides the value of the
DD. Hence, the proposed XC approximation can predict
the fundamental gap for an atom or molecule as a ground
state property.

The approach that we advocate,

related to an early proposal by Görling [10], is not
based on increasing the number of functional variables,
but on changing the way that the XC potential is de-
scribed: we consider the XC potential as an electrostatic
potential, generated by a fictitious XC charge density. In

contrast to directly modelling the potential, the XC den-
sity becomes the quantity to approximate as a functional
of the electronic density n.
Given a XC potential Vxc, we define the XC density nxc

by the Poisson equation (atomic units are used through-
out)

∇2Vxc(r) = −4π nxc(r) , (3)

with the boundary condition Vxc(r → ∞) = 0.
This establishes a one to one correspondence between

the XC potential and the XC density. Therefore, Eq. (3)
does not impose any condition over the XC potential.
A physical interpretation to XC density as a polariza-

tion charge density has been given by Tokatly [11].
The
motivation for the XC density approach comes from

an important property of the XC potential: the so-called
asymptotic limit [12, 13],

Vxc(r) ≈ −
1

|r|
(|r| → ∞) , (4)

The LDA and most GGAs do not obey the asymptotic
limit condition. In part, this common deficiency can be
explained simply. In regions that are spatially far away
from the system, the density and its derivatives decay
exponentially to zero [13]. It is difficult to use local values
of the density and its derivatives to reproduce a field that
decays to zero much more slowly.
For the XC density the asymptotic limit implies two

simple conditions: normalization and localization. For-
mally,

nxc(r) = 0 (|r| → ∞) , (5a)
∫

dr nxc(r) = −1 , (5b)

(proof in supp. mat. [14]). These constraints are simi-
lar to the ones for the electronic density. So, in princi-
ple, it is simple to construct a local or semi-local density
functional nxc[n] with the proper asymptotic limit. In
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FIG. 1. KLI electronic density and KLI and LDA XC densi-
ties for the beryllium atom. The inset details the asymptotic
region, where the KLI XC density shows the correct behav-
ior. The LDA XC density is incorrect in this region, with a
positive part that screens the charge in the central region.

fact, a direct example of this XC density based approach
is the functional nxc[n](r) = −n(r)/N , which yields the
Fermi-Amaldi XC potential [15] and provides an accurate
approximation of Vxc in the asymptotic regime [16, 17].
It is illustrative to see what the XC density looks

like for standard DFT approximations. For a given XC
potential, nxc can be calculated analytically (see supp.
mat. [14]), but in practice it is simpler to evaluate Eq. (3)
numerically. In Fig. 1, we compare nxc for LDA and exact
exchange in the Krieger-Li-Iafrate (KLI) [18] approxima-
tion. As can be seen from the figure, for large radius the
KLI XC density correctly goes to zero faster than the
electronic density. On the other hand, the LDA XC den-
sity becomes positive. This positive XC charge screens
the XC charge in the central region making the total XC
charge zero and therefore causing the potential to decay
exponentially.
As a first application of our approach, we propose a

correction method to enforce the proper asymptotic limit
for XC approximations that do not have it by construc-
tion. Given a certain potential V̄xc, we calculate the as-
sociated n̄xc from Eq. (3). To this XC density we apply
the correction procedure, that generates a corrected XC
density nc

xc. In turn, the corrected XC density is used
to reconstruct the corrected XC potential V c

xc by solving
Eq. (3).
The correction procedure for n̄xc enforces it to be local-

ized by setting it to zero when the local value of electronic
density is below a certain threshold η. This simple pro-
cedure can be written as a correction term ∆nxc to be
added to the XC density of the original potential,

∆nxc[n](r, η) =

{

0 if n(r) ≥ η
−n̄xc[n](r) if n(r) < η

. (6)

To determine the parameter η, for each density we ob-

tain an optimized value η0 that tries to enforce Eq. (5b).
First, we define the total XC charge as a function of η

qxc(η) =

∫

dr {n̄xc[n](r) + ∆nxc[n](r, η)} . (7)

Ideally, from Eq. (5b), we need to find η0 such that
qxc(η0) = −1. However, there is no guarantee about the
existence or uniqueness of η0. So we choose η0 such that
qxc(η0) has the closest value to -1, with η0 restricted to
be smaller than the first minimum of qxc(η).
This unambiguously determines η0 for each system.

(See supp. mat. [14].)
When qxc(η0) 6= −1, Eq. (5b) is still not satisfied, so we

rescale the correction by |qxc(η0)|
−1

. The final expression
for the XC density of the corrected potential is

nc

xc(r) = n̄xc(r) +
1

|qxc(η0)|
∆nxc(r, η0) . (8)

This rescaling form guarantees that Eq. (5b) is satisfied,
and that the original XC potential is changed as little as
possible in the central region (the region where n ≥ η0).
In theory, it is only the exchange term that is respon-

sible for the long range behavior, due to the much faster
decay of the correlation term [13], therefore, the correc-
tion can be applied either to the exchange potential or
the full XC potential. In this work, we apply it to the ex-
change part of the LDA, and we call the combination of
the corrected LDA exchange and LDA correlation (in the
Perdew-Wang form [19]) the corrected exchange density
LDA (CXD-LDA).
In all calculations the corrected potential is used self-

consistently. For spin-polarized systems, the correction
is calculated for the spin-unpolarized potential using the
total density. Then the difference between the corrected
potential and the original one is added to the XC poten-
tial for each spin component.
To test the CXD-LDA potential, we performed calcu-

lations for atoms and for a set of small molecules. We im-
plemented the correction procedure in the APE [20] and
Octopus [21] codes. We find that the optimized value of
ηo changes significantly for different systems. For most
atoms qxc(η0) 6= −1 while for all the tested molecules
qxc(η0) = −1 (see supp. mat. [14]). The numerical cost
of a self-consistent solution using the correction is similar
to the LDA calculation (see supp. mat. for details [14]).
In Fig. 2, we show the CXD-LDA potential for Ne

compared with an accurate approximation to the ex-
act potential [16], the LDA and two approximations
that have the correct asymptotic behavior: the van
Leeuwen-Baerends (LB) GGA [13] and the Räsänen-
Pittalis-Proetto (RPP) meta-GGA [22].
For atoms it is simple to understand the effect of the

correction procedure. Due to the spherical symmetry
and the monotonically-decreasing density, the correction
XC charge ∆nxc is a spherical shell. By Newton’s shell
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FIG. 2. CXD-LDA potential for neon. Comparison with the
LDA, LB [13], RPP [22] and the exact [16] potentials.

theorem, the correction potential will be constant in the
central region. Outside, the correction will decay close
to −1/r. We can expect this behavior to be similar for
more complex systems if the n(r) = η0 surface is close to
a sphere (see supp. mat. [14]).
The shape of the correction is similar to the one pro-

posed by Casida and Salahub [23, 24], who argument that
a shift of the XC potential in the central region is neces-
sary to fix the asymptotic limit of the LDA potential[25].
Moreover, they show that the shift is related to the DD
of the energy with respect to the particle number. As
in our method the shift appears naturally from imposing
the asymptotic limit, we can obtain the value of the DD.
To obtain the relation between the DD and the shift,

we assume that a potential V̄xc, which lacks the DD, ap-
proximates the XC potential averaged over the disconti-
nuity [5, 7]. This is

V̄xc =
1

2

[

Vxc(N
+) + Vxc(N

−)
]

. (9)

Using Eq. (2), immediately follows that

Vxc(N
−) = V̄xc −

1

2
∆xc . (10)

By imposing the asymptotic limit of Eq. 4, our cor-
rected potential is approximating Vxc(N

−) [26]. There-
fore, we can obtain the value of the DD from Eq. (10).
For practical calculations we average the change of the
XC potential due to the correction over the central region

∆xc = −
2

Ω

∫

n(r)≥η

dr
[

V c

xc(r)− V̄xc(r)
]

, (11)

where Ω is the volume of the central region. This ex-
pression for the DD can be calculated directly from the
correction process as a ground-state property. An alter-
native, but less practical, method for the calculation of
the DD is detailed in supp. mat. [14].

TABLE I. Comparison of the calculated derivative discontinu-
ity with theoretical and experimental results. a Experimental
gap values from Ref. [27]. b Ensemble spin DFT results by
Chan [6]. Values in atomic units.

Atom Experimentala ESDFTb CXD-LDA

B 0.295 0.270 0.284

C 0.367 0.342 0.337

O 0.447 0.404 0.435

F 0.515 0.478 0.467

TABLE II. Mean absolute error in the ionization energy for
atoms (He to Ar). Comparison of CXD-LDA with LDA,
LB [13], RPP [22] and KLI-CS [18, 30] potentials. aResults
from Ref. [31]. bResults from Ref. [32] given in Ref. [31].
(Data in supp. mat. [14].)

LDA LBa RPPa KLI-CSb CXD-LDA

41% 3.7% 7.4% 5.7% 4.1%

In Table I, we compare the DD obtained with Eq. (11)
with the values reported by Chan [6] from ensemble DFT
(with XC potentials obtained from wave-function meth-
ods). We also compare it with the experimental value
of the gap, that for these open-shell atoms is equal to
the DD since the KS gap is zero. The three sets present
a remarkable agreement, with our results being smaller
that the experimental values by less than 10%.

To investigate further the quality of corrected potential
and the predicted DD, we compare the calculated gap
with the LDA KS gap and the experimental gap, for our
set of atoms and molecules. The results are plotted in
Fig. 3. The KS gap of the corrected potential is close to
the LDA one [28] and far from the experimental value.
Once we add the DD, however, the results are closer to
the experiment, with an average error of 11% for atoms
and 7% for molecules.

While the correction has little effect on the KS gap, it
changes the KS eigenvalues. This can be seen in the ion-
ization energy (I), which in DFT is given by−ǫHOMO [12].
In Fig. 4, we plot I for the LDA and CXD-LDA as a func-
tion of the experimental value. In Table II, we compare
the deviation from experimental results for atoms with
other XC approximations that have the proper asymp-
totic limit: LB, RPP, and KLI with Colle-Salvetti corre-
lation [30] (KLI-CS). The correction procedure improves
considerably the LDA results, with similar accuracy to
other long range XC potentials.

The XC density approach directly provides an approx-
imation to the XC potential and not to the XC energy
functional. In principle, the XC energy can be obtained
by a path integration [33], or in the particular case of
an exchange potential by the Levy-Perdew virial rela-
tion [34]. However, not all potentials are functional
derivatives of an energy functional. For those who are
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FIG. 3. Comparison of the CXD-LDA gap with LDA and
available experimental results. The CXD-LDA gap has con-
tributions from the Kohn-Sham (KS) gap and the derivative
discontinuity (DD). Result for atoms (top) from H to Kr,
experimental values from Ref. [27], and a set of molecules
(bottom), experimental values compiled in Ref. [7], except
for C6H6 [27, 29]. (Data in supp. mat. [14].)

not, sometimes called stray potentials, the XC energy
is not properly defined as it depends on the integration
path.

Some numerical tests have been proposed to detect
when a potential is stray [35]. We have applied one of
this tests to our corrected LDA potential and it appears
to indicate that it is not a functional derivative (see supp.
mat. [14]). This issue will be addressed in detail in fu-
ture work. Even when a potential is stray, it can be used
useful to predict physical properties, especially proper-
ties that are total energy differences. For example, the
KLI, LB and RPP potentials used in this article for com-
parison are stray potentials [35].

In summary, we have introduced a new auxiliary quan-
tity, the XC density, to construct approximations for the
XC potential. Based on an exact condition that the XC
potential must fulfill and basic notions of electrostatics,
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FIG. 4. LDA and CXD-LDA ionization energy as a function
of the experimental value. Atoms from H to Sr. (Data in
supp. mat. [14].)

we have presented a correction method for any previously
proposed XC potential.

Additionally, the correction procedure allows for the
direct calculation of the DD of the XC energy, which
can be used to directly predict the fundamental gap as
a ground-state property. Moreover, our approach al-
lows for a routine computation of the DD as a practical
method for the prediction of the gap.

The proposed potential is a pure functional of the elec-
tronic density with a certain degree of non-locality in-
cluded by the optimization of η0 and by the Poisson equa-
tion. The correction procedure does not depend on any
empirical or globally adjusted parameter.

Since the basis for our method is the correction of the
XC potential in the asymptotic region, it is not directly
applicable to crystalline systems. However, the concepts
of the XC density and the DD as a potential shift are still
valid. Therefore, it might be possible to generalize the
method to solids, where the determination of accurate
gaps is one of the main challenges for DFT.
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