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A precision measurement of the γ yields following the β decay of 32Cl has determined its isobaric
analogue branch to be (22.47+0.21

−0.18)%. Since it is an almost pure Fermi decay, we can also determine
the amount of isospin-symmetry breaking in this superallowed transition. We find a very large
value, δC = 5.3(9)%, in agreement with a shell-model calculation. This result sets a benchmark
for isospin-symmetry-breaking calculations and lends support for similarly-calculated, yet smaller,
corrections that are currently applied to 0+

→ 0+ transitions for tests of the Standard Model.

PACS numbers: 24.80.+y, 23.40.Bw, 29.30.Kv

Precisely measured ft values of Jπ = 0+→ 0+ β de-
cays of isospin T = 1 nuclei are used to set stringent
limits on scalar and right-handed interactions, verify
the conserved vector current (CVC) hypothesis at the
∼ 10−4 level, and provide the most precise measurement
of Vud, the up-down element of the Cabibbo-Kobayashi-
Maskawa quark-mixing matrix [1, 2]. For these pur-
poses, the vector coupling constant is extracted from the
experimental ft values of these nuclei, after correcting
for isospin-symmetry-breaking and radiative effects. To
date, the ft values of 13 such nuclei have been experimen-
tally determined to a precision of . 0.3% which sets one
of the most demanding tests of the Standard Model [2].
These experimental advances have placed the theoreti-
cally calculated corrections under intense scrutiny in re-
cent years. Emphasis has been placed on the nuclear-
structure-dependent isospin symmetry breaking (ISB)
corrections, denoted by δC [3, 4], and defined by the equa-
tion |MF |

2 = |M0|
2(1−δC). HereMF is the Fermi matrix

element for the transition and M0 is its value in the limit
of strict isospin symmetry, which is broken by Coulomb
and charge-dependent nuclear forces. The 13 cases just
mentioned are all T = 1 → 1 transitions in A = 4n + 2
nuclei with corrections that are small and of order 1%.

A discriminating test of these calculations is realized by
investigating cases where the correction is much larger.
Up to now, though, there have been no nuclei studied
where δC is larger than ∼ 2% [2, 5, 6]. In this Letter,
we focus on the β decay of 1+, T = 1 32Cl as a test
of isospin-mixing calculations. Its Fermi decay branch
feeds the analogue 1+, T = 1 state in 32S, whose position
in the spectrum at 7002-keV excitation is very close to
a known 1+, T = 0 state at 7190 keV [7]. This greatly
enhances the size of the isospin-breaking correction. Our
calculation of the ISB effect for this A = 4n nucleus
is δC = 4.6(5)%, a value significantly larger than those
found in any of the A = 4n + 2 nuclei. Thus the case
of 32Cl provides a unique opportunity to test isospin-

symmetry-breaking calculations where the correction is
relatively very large.

The experiment was performed at the Cyclotron In-
stitute at Texas A&M University. Details of this exper-
iment will appear in a separate paper [8]. Briefly, we
produced 32Cl via the inverse-kinematic transfer reaction
1H(32S, n)32Cl using a LN2-cooled, H2 gas target with a
400 nA 32S primary beam at 24.8 MeV/nucleon. The
reaction products were spatially separated by the Mo-
mentum Achromatic Recoil Separator [9], resulting in a
91% pure, 20 MeV/nucleon 32Cl beam with an intensity
of ∼ 2 × 105 ions/s. The beam was implanted and col-
lected in an aluminized-Mylar tape for 0.8 s before a fast
tape-transport system moved the activity to a shielded
counting station 90 cm away. Data for β − γ coincident
events were acquired using a 1.5 inch diameter, 1 mm-
thick scintillator and a 70% HPGe detector. Count times
were for 1, 2 and 4 sec (76%, 13% and 11% of the data
respectively). The scintillator was placed 0.5 cm from
the activity, detecting ≥ 40 keV positrons with ≈ 32%
efficiency. On the opposite side of the tape the HPGe
was placed a large distance away (15.1 cm) to reduce the
effects of coincidence summing of the γ rays. The cycle of
collecting, transporting and measuring the 32Cl activity
was repeated continuously throughout the experiment.
Critical to the success of this experiment was the ex-

tremely precise photopeak efficiency calibration of our
HPGe detector. As described in detail in Ref. [10], using
a combination of measurements and Monte Carlo calcu-
lations with the code Cyltran [11], the efficiency is de-
termined to ±0.2% from Eγ = 50− 1400 keV and ±0.4%
from 1.4−3.5 MeV. The energy range of the HPGe in the
present work, however, extends up to 7.35 MeV; so we ex-
tended the efficiency curve above 3.5 MeV using the same
Cyltran code used in Ref. [10]. To estimate uncertain-
ties in this extrapolation, we performed an independent
calculation using the Monte Carlo code Penelope [12].
The difference between the two efficiency curves is shown
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FIG. 1. Top: Percent differences in the absolute effi-
ciency from Ref. [10] (solid line) and our adopted uncer-
tainties (shaded region). This adopted efficiency curve and
its Cyltran-calculated extrapolation (dashed line) are com-
pared to a Penelope simulation (dotted line). Bottom: γ-
energy spectrum of the 11.2 × 106 β-coincident events ob-
served in this work. Aside from the isolated 30S contaminant
peak at 677 keV, labeled peaks are associated with the de-
cay of 32Cl (* and ** indicate their single- and double-escape
peaks). Boxed values indicate transitions from the 7002-keV
isobaric analogue state.

in the top panel of Fig. 1. Over the range of measured val-
ues, Penelope reproduces well the experimentally deter-
mined efficiency, mostly within the ±(0.2− 0.4)% uncer-
tainty range from Ref. [10]; above 3.5 MeV, the difference
between the two extrapolations is contained within our
adopted uncertainties ranges of ±1% from 3.5 − 5 MeV
and ±5% above 5 MeV. The bottom panel of Fig. 1
shows a plot of the observed γ spectrum in coincidence
with a β signal in the scintillator, where nearly every
observed peak is associated with the decay of 32Cl.
Once the peak areas were obtained, we used the pre-

cisely known efficiencies to convert them into relative
yields of γ-rays. We then fit the β and γ branches to re-
produce these yields. Our measurement has found 3 new
β branches, 22 new γ lines, placed limits on 10 potential
γ transitions, and improved the precision of the branches
and yields reported previously [13] by about an order of
magnitude [8]. The 12 β transitions we observe and the
known ground state branch of (1.0+0.2

−0.5)% from Armini et
al. [14] represent almost all of the β yield; however, there
is potentially still a large number of weak β transitions
which, though too weak to be seen individually, may sum
up to a total β strength that is non-negligible. This “Pan-
demonium effect” [15] was recently raised [16] in the con-
text of superallowed β decay in p, f -shell nuclei. Here we
follow the approach advocated there: to compute these
very weak, unobserved β branches using a shell-model
calculation and include this predicted strength as a small
correction in the analysis. We take the model space to

be the full s, d shell and use the charge-independent ef-
fective interaction of Wildenthal USD [17], as well as the
more recent USDA and USDB updates [18] of Brown and
Richter [18].
Our analysis of the branches and yields includes a to-

tal of 51 excited states in 32S. In addition to the 12
β branches observed, our shell model calculation iden-
tifies approximately 30 additional weak β transitions to
states whose excitation energy lies between 7.485 and
≈ 11.8 MeV. Though none of these individually has a
β-transition strength greater than 0.3%, the summed β
strength of all of them is 0.60(10)%, where the uncer-
tainty is a result of the different interactions used in the
shell model. We include these weak β strengths and the
de-excitation γ rays predicted by the shell model in our
overall analysis to account for the small Pandemonium
effect. We do not separately include the α-particle and
proton-emitting states reported by Honkanen et al. [19]
because their summed β strength of 0.080(5)% is signif-
icantly smaller than–and is no doubt already included
in–the missing strength predicted by the shell model.
We find the β branch to the isobaric analogue state

(IAS) at 7002 keV is R = (22.47± 0.13+0.16
−0.12)%. The first

uncertainty is statistical and the second is dominated by
two sources of systematic uncertainty: +0.11

−0.05% from the

(1.0+0.2
−0.5)% ground state branch reported by Armini et al.,

and ±0.10% from the photopeak efficiency of the HPGe
detector.
To derive the experimental ft value, we obtain the

partial half-life, t, from

t =
t1/2

R
(1 + PEC) = 1.327(13) s, (1)

where the 32Cl half-life is t1/2 = 298(1) ms [14], R is
the superallowed branching ratio quoted above, and the
small electron-capture fraction is calculated to be PEC =
0.071%. We use the shell model to compute the shape
correction function C(W ) (as described in the appendix
of Ref. [1]) when defining the statistical rate function

f =

∫ W0

1

pW (W0 −W )2 F (Z,W )C(W ) dW, (2)

where W = Ee/me is the total energy of the positron
in electron rest-mass units, p = (W 2 − 1)1/2 is its mo-
mentum, Z is the charge of the daughter nucleus, and
F (Z,W ) is the Fermi function. The end-point energy,
W0, is determined using −26015.535(2) keV for the mass
excess of 32S from Ref. [20], and we average Refs. [21–23]
to get −13334.60(57) keV for the mass excess of 32Cl.
Combined, the decay energy is QEC = 12680.9(6) keV.
This gives f = 2411.6± 2.3± 0.3 for the phase-space fac-
tor, where the first uncertainty is from the QEC value and
the second is from the shell-model calculation of C(W ).
Thus the experimental ft value for decay to the IAS is
ft = 3200(30) s, where the precision is dominated by the
±0.9% uncertainty in the branch to the IAS.
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We now deduce an experimental value for the isospin-
mixing parameter, δC , of the decay to the isobaric-
analogue state from the measured ft value. Before this
can be done, however, we need some way of separating
out the Gamow-Teller component of this mixed 1+→1+

transition so that we can analyze the Fermi component
alone. Fortunately, the USD, USDA and USDB shell-model
calculations (described later) all predict that the Gamow-
Teller matrix element is ≈ 0.1% of the Fermi matrix ele-
ment, and so is negligibly small for this transition. Thus
we proceed to analyze this transition as if it were a pure-
Fermi type via the equation

ft(1 + δ′R)(1 + δNS − δC) =
K /G2

V (1 + ∆V
R)

B(F) +B(GT)
. (3)

Here K/(~c)6 = 2π3
~ ln 2/(mec

2)5 is a constant and
GV is the vector coupling constant characterizing the
strength of the vector weak interaction. The numera-
tor in Eq. (3) may be evaluated using the precision work
on 0+→ 0+ superallowed transitions: K/G2

V (1 + ∆V
R) =

2〈Ft0
+→0+〉, where the average of the 13 most precisely-

measured cases yields 〈Ft0
+→0+〉 = 3071.81(83) s [2]. The

radiative correction has been split into three pieces: (a) a

nucleus-independent term, ∆V
R , is included in 〈Ft0

+→0+〉;
(b) a trivially nucleus-dependent term, δ′R, is calculated
to be 1.421(32)%; and (c) a second nuclear-structure-
dependent term, δNS, is determined to be −0.15(2)%
in a shell-model calculation following the procedures in
Ref. [24]. Finally B(F) and B(GT) are the squares of the
Fermi and Gamow-Teller matrix elements.
In the isospin-symmetry limit, B(F) = |M0|

2 = 2 for
T = 1 transitions. For B(GT), we take the three theo-
retical values from the shell model using the USD, USDA
and USDB effective interactions, average them and assign
an uncertainty which spans the three calculated values:
B(GT) = (1.8+2.3

−1.7)× 10−3. This is negligibly small com-
pared to the dominant Fermi strength. On rearranging
Eq. (3), we obtain

δexpC = 1 + δNS −
2〈Ft0

+→0+〉

ft(1 + δ′R)
[

B(F) +B(GT)
]

= 5.3(9)%. (4)

This represents a very substantial isospin-symmetry-
breaking term, the largest ever determined in a super-
allowed Fermi transition. As Fig. 2 shows, it is an order
of magnitude larger than the typical correction applied
to the 0+→ 0+ pure Fermi decays, and nearly 3× larger
than the biggest of these cases, 74Rb. Thus this provides
a strong benchmark with which to compare the variety
of theoretical methods and models proposed to calculate
ISB in nuclei [3, 4].
In what follows we present a shell-model calculation of

δC to compare to the above result following the proce-
dures developed by Towner and Hardy [3]. The technique

0+
→ 0+

calculated

14O 26Alm 34Ar 42Sc 50Mn 62Ga

10C 22Mg 34Cl 46V38Km 54Co 74Rb

δC1

δC2
}

0+
→ 0+

32Cl

TZ = −1

TZ = 0

measured
}

32Cl

δ
C

[%
]

calculated

FIG. 2. Our determination of the isospin-breaking correction
for 32Cl (filled circle), and calculations for 32Cl as well as other
superallowed transitions (open points), with the δC1 and δC2

components shown separately. The measurement and predic-
tion for 32Cl, particularly the δC1 component, is significantly
larger than in any of the 0+

→ 0+ transitions.

is to introduce Coulomb and other charge-dependent
terms into the shell-model Hamiltonian. However, be-
cause the Coulomb force is long range, the shell-model
space has to be very large indeed to include all the po-
tential states that the Coulomb interaction might con-
nect. Currently this is not a practical proposition. To
proceed, Towner and Hardy divide δC into two parts:
δC = δC1+δC2, where δC1 arises from configuration mix-
ing between states of the same spin in a shell-model cal-
culation using a restricted basis (in this case the full s, d
shell), while δC2 separately encompasses mixing beyond
this model space.

Starting with δC1, we perform a shell-model calcu-
lation in the truncated 0~ω model space of the s, d-
shell orbitals. Charge-dependent terms are added to
the charge-independent Hamiltonians of USD, USDA and
USDB. The strengths of these charge-dependent terms
are adjusted to reproduce the b = −5.4872(35) MeV
and c = 0.1953(37) MeV [25] coefficients of the isobaric
multiplet mass equation as applied to the 1+, T = 1
triplet of states in A = 32, the states involved in the β-
transition under study. As already mentioned, the bulk
of the isospin mixing in the IAS occurs with the neigh-
boring 1+, T = 0 state. In the limit of two-state mix-
ing, perturbation theory implies that δC1 ∝ 1/(∆E)2,
where ∆E is the energy separation of the analog and
non-analog 1+ states. Experimentally, it is known to
be 188.2 ± 1.2 keV [7, 8] (compared to the much larger
2 − 4 MeV of most 0+→ 0+ transitions [3]). The shell
model calculates this separation to be 184 keV with USD,
248 keV with USDA and 387 keV with USDB interactions.
We avoid the large uncertainties this would impose on our
calculation by following the Towner-Hardy recommenda-
tion [3] of scaling the calculated δC1 value by a factor
of (∆E)2theo/(∆E)2exp, the ratio of the square of the en-
ergy separation of the 1+ states in the model calculation
to that known experimentally. Following this procedure,
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the δC1 values obtained in the three shell-model calcu-
lations are reasonably consistent: δC1 = 3.73% for USD,
3.32% for USDA, and 4.19% for USDB. We average these
three results and assign an uncertainty equal to half the
spread between them to arrive at δC1 = 3.75(45)%. As
Fig. 2 shows, this is over an order of magnitude larger
than δC1 calculated for any of the thirteen 0+→ 0+ tran-
sitions used to determine Vud.

For the calculation of δC2 we consider mixing with
states outside the 0~ω shell-model space. The princi-
pal mixing is with states that have one more radial node.
Such mixing effectively changes the radial function of the
proton involved in the β decay relative to that of the
neutron. The practical calculation, therefore, involves
computing radial overlap integrals with modeled proton
and neutron radial functions. Details of how this is done
are given in Ref. [3]. The radial functions are taken
to be eigenfunctions of a Saxon-Woods potential whose
strength is adjusted so that the asymptotic form of the
radial function has the correct dependence on the sep-
aration energy. The initial and final A-body states are
expanded in a complete set of (A−1)-parent states. The
separation energies are the energy differences between
the A-body state and the (A− 1)-body parent states. A
shell-model calculation is required to give the spectrum
of parent states and the spectroscopic amplitudes of the
expansion. For the three USD interactions, we compute
δC2 = 0.827% for USD and 0.865% for both USDA and
USDB. Our adopted value is δC2 = 0.85(3)%. The un-
certainty, calculated in the same manner as described in
Ref. [3], represents the range of results for the USD in-
teractions, the different methodologies considered in ad-
justing the strength of the Saxon-Woods potential, and
the uncertainty in the Saxon-Woods radius parameter as
fitted to the experimental charge radius of 32S.

Combining our adopted shell-model calculations,
δC1 = 3.75(45)% and δC2 = 0.85(3)%, we find δtheorC =
4.6(5)%, which agrees with the experimentally deter-
mined 5.3(9)% of Eq. (4) within stated uncertainties.
The agreement between theory and experiment in this
case where δC is so large represents a very impor-
tant validation of the theoretical procedures outlined
here to calculate the ISB effects in nuclei. In par-
ticular, for (shell-model) calculations which separate
configuration-mixing and radial-overlap components, this
δC1-dominated result provides an especially sensitive
benchmark for the approximations used when calculat-
ing configuration-mixing contributions to the total ISB
effect in superallowed 0+→ 0+ decays.

In conclusion, we have measured relative γ-ray intensi-
ties and characterized the superallowed β branch for the
decay of 32Cl. The isospin-symmetry-breaking correc-
tion, δC , of this almost pure Fermi transition is consider-
ably larger than the typical values found in other super-
allowed decays and can therefore be used as a stringent
test of theoretical procedures to calculate these isospin-

breaking effects. Agreement with a shell-model calcula-
tion validates the approach currently applied [2] to the 13
most precisely measured ft values of 0+→ 0+ transitions
and adds confidence to the small corrections applied to
them for Standard Model tests.
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