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The very long-term evolution of the hierarchical restricted three-body problem is calculated an-
alytically for high inclinations. The Kozai-Lidov Cycles (KLCs) slowly evolve due to the octupole
term in the perturber’s potential and exhibit striking features, including extremely high eccentrici-
ties and the generation of retrograde orbits with respect to the perturber. These features were found
in recent numerical experiments of the non-restricted three body problem and were attributed in-
accurately to the comparable and low masses of the two orbiting companions. Our calculation is
done by averaging for the first time the double averaged secular equations of motion over the KLCs
and finding a new constant of the motion. These very long-term effects are likely to be important
in various astrophysical systems thought to involve KLCs, such as hot Jupiters, irregular moons of
planets, tight stellar binaries, mergers of compact objects, and many others.

A test particle on a Keplerian orbit, weakly perturbed
by the tidal potential of a distant orbiting mass (re-
stricted, hierarchical three body problem), exhibits vari-
ations in eccentricity and inclination on secular time
scales, tsecular. If the potential is approximated by a
quadrupole, the variations are periodic and have been
obtained analytically [1, 2]. These Kozai-Lidov Cycles
(KLCs) are suggested to play an important role in the for-
mation and evolution of many astrophysical systems [e.g.
2–6, 9]. Recently, numerical experiments were reported
[9] in which two of the approximations used in Kozai-
Lidov theory were relaxed: (i) the octupole potential of
the perturber was included, and (ii) the mass of the par-
ticle was not assumed to be much smaller than that of the
perturber. Very long-term evolution, t ≫ tsecular, of the
cycles was found, exhibiting striking features, including
generation of extremely high eccentricities and retrograde
orbits (‘orbit flipping’) with respect to the perturber [9];
these phenomena are not possible in Kozai-Lidov theory
(see also [8]). In this Letter the very long-term evolution
of KLCs due to the small octupole potential is studied.
The test particle limit is retained (condition (i) above is
relaxed but not (ii)), resulting in similar very long-term
evolution. For high inclinations, the long-term evolution
is calculated analytically by averaging the secular equa-
tions of motion over the KLCs. The analysis identifies
a new constant of the motion and yields an analytical
criterion for orbit flipping.

Secular Equations Consider a test particle on a Ke-
plerian orbit (semi-major axis a and eccentricity e) sub-
ject to perturbation by a distant mass Mper on an orbit
(aper, eper) around the same central mass M . The co-
ordinate system is defined using the perturber’s orbit,
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with the z-axis chosen to be in the direction of the an-
gular momentum vector and the x-axis pointing to the
pericenter. It is useful to parametrize the test parti-
cle’s orbit by two dimensionless vectors: j = J/

√
GMa,

where J is the specific angular momentum vector and
G is the universal constant of gravitation; e, a vector
pointing in the direction of the pericenter with magni-
tude e. The orientation of j is described by the in-
clination i and the longitude of ascending node Ω, by
j = j(sin i sinΩ, − sin i cosΩ, cos i). Usually, the orien-
tation of e is set by additionally specifying the argu-
ment of pericenter ω (angle between e and ẑ × j). Here
we define the orientation of e by the co-latitudinal an-
gle 0 ≤ ie ≤ π, and longitude Ωe defined by e =
e(sin ie cosΩe, sin ie sinΩe, cos ie). It turns out that for
the cases considered, Ωe is slowly varying and is useful
for describing the very long-term behavior of the system.
The secular orbital evolution of the test particle is de-

termined by double time-averaging the perturbing po-
tential Φper over the orbital periods of the test parti-
cle and the perturber. The averaged potential expanded
to the octupole order (3rd order in a/aper) is given by
〈Φper〉 = Φ0φ = Φ0(φQuad + ǫOctφOct), where the dimen-
sionless averaged potential φ is expressed as the sum of
two components (quadrupole and octupole [12]),

φQuad =
3

4
(
1

2
j2z + e2 − 5

2
e2z −

1

6
), (1)

φOct =
75

64

[

ex(
1

5
− 8

5
e2 + 7e2z − j2z )− 2ezjxjz

]

,

(2)

and the normalization parameters are

Φ0 =
GMpera

2

a3per(1− e2per)
3/2

, ǫOct =
a

aper

eper
1− e2per

. (3)

In the secular approximation, a and φ are constant
with time while j and e evolve according to the following
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equations of motion [7, 10],

dj

dτ
= j×∇jφ+e×∇eφ,

de

dτ
= j×∇eφ+e×∇jφ, (4)

where τ = t/tsec and tsec =
√
GMa/Φ0 is the secular

timescale. Physical solutions are restricted to those sat-
isfying the physical constraints j2 = |j|2 = 1 − e2, and
e · j = 0.
Kozai-Lidov Cycles (KLCs) When expanded to the

quadrupole order (i.e., ǫOct = 0), the averaged perturb-
ing potential is axisymmetric. As a consequence, jz is
conserved and the equations of motion are invariant un-
der rotational transformations around the z axis. In this
case, e, i, ω and ie undergo periodic oscillations (KLCs),
which are determined by the two constants of motion jz
and φ = φQuad [1, 2]. It is convenient to use the constant
of motion CK = 4

3
φQuad − 1

2
j2z + 1

6
, which is given by

CK = e2 − 5

2
e2z = e2(1− 5

2
sin2 i sin2 ω). (5)

When CK < 0, ω librates around π/2 or −π/2 (libra-
tions), while for CK > 0, ω varies monotonically with
time taking all values from 0 to 2π (rotations).
For rotations of ω (CK > 0), e reaches minimum at

ω = 0 or π, implying e2min = CK .
For librating solutions, emin is obtained at ω = ±π/2.

For any KLC, maximum e is obtained at ω = ±π/2,
leading to 3e4max + (5j2z − 3 + 2CK)e2max − 2CK = 0.
Equations of motion Since the octupole contribution

is small the evolution is described by KLCs on short time
scales (of order tsec, in the vicinity of any time t). The
properties of these cycles are determined by the (t de-
pendent) values of jz and CK . Moreover, given that the
total potential φ is conserved, we have to a good approx-
imation φQuad = const, implying that

CK +
1

2
j2z = const, ⇒ ĊK = −jz j̇z. (6)

Thus, the problem can be reduced to finding jz(t).
The time derivative of jz arises from the octupole po-

tential alone; using Eqs. (1), and (4), it is given by

j̇z =
75

64
ǫOct

[

2jyjzez − ey(
1

5
− 8

5
e2 + 7e2z − j2z )

]

. (7)

We focus on KLCs with j2z ≪ 1 and study the very
long-term behavior of the system on time scales t ∼
ǫ−1
Octtsec. Taking the lowest order terms in jz , we have

j̇z = −ǫOct sin(Ωe)fj(e, ie) (8)

where fj = (75/64)e sin ie
[

1
5
− e2(8

5
− 7 cos2 ie)

]

.
The equation for Ωe, governed by the quadrupole, sat-

isfies [12]

Ω̇e = jzfΩ (9)

where fΩ = 3(8− 6/ sin2 ie)/8.

For librating cycles (with ω librating), Ωe changes by
nearly π each cycle (due to the small ie values, and corre-
spondingly high fΩ values obtained [12]), implying that
j̇z goes to approximately −j̇z and the change in jz af-
ter two cycles nearly vanishes (it is higher order in jz).
For rotating cycles, Ωe varies slowly implying that j̇z
changes slowly. Below we focus on these rotating cycles
for which jz can monotonically change over several sec-
ular timescales. We note that for some librating initial
conditions, we numerically found significant modulation
(including orbit flips, where the orbit changes from pro-
grade to retrograde orientation relative to the perturber)
occurring on time scales t ∼ ǫ−2

Octtsec much greater than

those studied here, t ∼ ǫ−1
Octtsec.

Using Eq. (6), and assuming that the initial conditions
jz,0, CK,0 are in the rotating zone (CK,0 > 0), the condi-
tion for rotation is −jz,max < jz < jz,max where

jz,max =
√

2CK,0 + j2z,0. (10)

If jz crosses this border, j̇z changes sign during each cy-
cle. For the examples of such cases we checked numeri-
cally, after a few cycles jz moved away from this limit,
back into the rotation region.
Averaged equations We next average the equations of

motion over the rotating KLCs to obtain approximate
equations that describe the very long-term behavior of
the system. To the lowest order in jz , ǫOct, we can av-
erage Eqs. (8) and (9) over a KLC by taking the limit
jz = 0 in which Ωe is constant and neglecting the devia-
tion of Ω̇e due to the octupole. The latter is important
only during short episodes when |jz| . ǫOct, in which
jz can change considerably during one KLC and which
are not resolved in the lowest order approximation. We
obtain

Ω̇e = jz 〈fΩ〉
j̇z = −ǫOct 〈fj〉 sin(Ωe), (11)

where fi (i = Ω, j) are averaged over a KLC with jz = 0,

〈fi〉 =
1

τKLC

∮

jz=0

dtfi =
4

τKLC

∫

√
1−e2

min

0

djj̇−1fi, (12)

where τKLC =
∮

dt is the KLC period at jz = 0. Note
that e2(1−(5/2) cos2 ie) = CK , which together with e2 =
1−j2 and e2min = CK allows a straightforward integration
yielding

〈fΩ〉 =
6E(x)− 3K(x)

4K(x)
,

〈fj〉 =
15π

128
√
10

1

K(x)
(4 − 11CK)

√

6 + 4CK ,

x =
3− 3CK

3 + 2CK
, (13)

whereK(m) and E(m) are the complete elliptic functions
of the first and second kind respectively. Note that 〈fi〉
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FIG. 1: Upper panel: 〈fj〉 (solid) and 〈fΩ〉 (dashed) from
Eqs. (13). Lower panel: F from Eq. (15).

0 100 200 300 400
−0.2

0

0.2

j z

0 100 200 300 400
0

100

200

i

0 100 200 300 400

10
−5

10
0

t/t
sec

1−
e

FIG. 2: Results of numerical integrations for ǫOct = 0.01, with
initial conditions ω0 = 0, Ω0 = π, i0 = 80◦, e0 = 0.1 where
for ω = 0 emin = e0. The blue solid lines are the result of the
integration of the full secular equations, Eqs. (4), while the
red dashed lines are the result of the integration of the aver-
aged equations, Eqs. (11), (13) and (6), and using the Kozai-
Lidov relations to determine emin, emax and imin, imax. The
two green horizontal lines in the top panel represent ±jmax,
given by Eq. (10)

are functions of CK alone since the KLC over which the
averaging is made has jz = 0. The upper panel of Fig. 1
shows plots of 〈fΩ〉 and 〈fj〉.
Eqs. (11),(13) and (6) form a closed set of equations

for the slowly varying jz, CK and Ωe. An example of a
numerical integration of these equations, compared with
the results of a direct integration of the full secular equa-
tions, Eq. (4), is shown in Fig. 2 for ǫOct = 0.01. As can
be seen, the approximate equations describe the long-
term evolution to a good approximation.
These equations break down if |jz| crosses the thresh-

old jz,max, given by Eq. (10), in which case Ωe receives

kicks, j̇z changes sign, jz moves to the rotation region
after a few secular time scales and the averaged equa-
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FIG. 3: Results of numerical integrations for ǫOct = 0.01, with
initial conditions ω0 = 0, Ω0 = 0, i0 = 88◦, e0 = 0.1. The line
styles are as in Fig. 2.

tions become valid again. An example of such behavior
is seen in Fig. 3. In this example, the effective equations,
Eqs. (11),(13) and (6), were integrated numerically only
in the intervals where CK > 0 (dashed lines).
Analytic solution The averaged equations of motion,

Eqs. (11), (13) and (6), admit a constant of the motion
of the form

C = F (CK)− ǫoct cosΩe. (14)

Indeed, using (11) and (6) we find, Ċ =
ǫoctjz sinΩe(F

′ 〈fj〉+ 〈fΩ〉), and by defining

F (CK) = −
∫ CK

0

〈fΩ〉 (c)
〈fj〉 (c)

dc

= 32

√
3

π

∫ 1

3−3CK

3+2CK

K(x)− 2E(x)

(41x− 21)
√
2x+ 3

dx (15)

we obtain Ċ = 0. The numerical value of F (e2min) as a
function of emin is shown in the bottom panel of Fig. 1
and tabulated in [12].
Note that F diverges at emin,inf = (4/11)0.5 where

〈fj〉 = 0 and has a maximum at emin,m ≈ 0.335. For
emin > emin,inf , the integration limits in Eq. (15) must be
chosen differently. Here we focus on emin < emin,inf . This
constant of motion holds most of the information about
the system.
Flip criterion We next use the constant of motion,

Eq. (14), to derive a criterion for the initial conditions
which allow jz to change sign, hence allowing i to increase
above 90◦, so that the orbit becomes retrograde relative
to the perturber.
During a flip, jz = 0 and Eq. (6) implies that CK =

CK,0+0.5j2z,0. Given the constant of motion Eq. (14), and
that the term ǫOct cosΩe can change by at most 2ǫOct, a
required condition for a flip is that ǫOct > ǫOct,c where

ǫOct,c =
1

2
max (|∆F (x)|) (16)
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FIG. 4: The thick black line is the analytical threshold for a
flip, Eq. (16), at e0 → 0 (this reduces to (17) for i0 > 61.7◦).
The results from numerical integrations of the full secular
equations are shown as red circles (cases that had a flip)
and blue circles (cases that did not flip). All simulations
had ω0 = 0, e0 = 0.001 and Ω scanned between 0 to 2π,
covering the rotating KLCs initial conditions. Note that
emin = e0 when ω0 = 0. The thin black lines are the ap-
proximate analytical thresholds resulting from Eq. (16) for
e0 = 0.2, 0.335(= emin,m), 0.5 (left to right at high ǫc).

where x is in the range CK,0 < x < CK,0 + 0.5j2z,0 and
∆F (x) = F (x)−F (CK,0). For cases where initially e0 ≪
1 implying that CK ≪ 1 and jz,0 = cos i0, and for j2z,0 <

2e2min,m (i0 > 61.7◦), Eq. (16) reduces to

ǫOct,c =
1

2
F (

1

2
cos2 i0). (17)

This analytic theoretical threshold for orbit flips is
shown in thick black line in Fig. 4. For comparison, the
results of numerical integrations of Eqs. (4) for 10/ǫOct

secular times for ǫOct scanned over 0.001 to 0.2, i0
scanned over 40◦ to 90◦, with ω0 = 0, e0 = 0.001 and
Ω0 scanned over 0 to 2π are shown in filled red (flipped)
and open blue (no flip) circles. The analytical curve de-
scribes the flip condition to better than 10% for i0 & 80◦,
better than 20% for i0 > 70◦, and to a factor less than
2 for i > 50◦. The deviation at low inclinations (large
|jz |) is not surprising, given that our formalism assumes
j2z ≪ 1. It is encouraging that the overall behavior is
captured quite well for jz up to 0.5. The thresholds re-
sulting from Eq. (16) for e0 = 0.2, 0.335, 0.5 (left to right
at high ǫOct,c) are shown as thin black lines. Note the

discontinuity in the cases e0 < emin,m which arises from
the presence of a maximum in F . Note also the presence
of flips for very small octupoles at e0 = emin,m where
〈fΩ〉 = 0 and Ωe can remain constant for a long while
allowing jz to change considerably.

Discussion The analysis presented in this letter
shows that the very long-term evolution, numerically
studied in the context of hot Jupiter migration in [9], oc-
curs already in the test particle approximation in which
the mass of the perturber is much bigger than that of
the planet, and will thus be important for stellar mass
perturbers. The octupole potential causes a slow, cyclic
modulation of the Kozai-Lidov cycles. Note that simi-
lar evolution occurs in other perturbing potentials where
there are small deviations from axisymmetry [11].

Consequently, the distribution of orbital parameters
of KLC-migrated hot Jupiters due to a stellar perturber
may be significantly affected by the dynamics of the oc-
tupole perturbations described in this Letter.

Consider for example, the parameters used to numer-
ically study the statistical properties of hot Jupiter mi-
gration in [5], a = 5AU, aper = 500AU, M = Mper =
M⊙ ∼ 1000MJ , where the contribution of the octupole
term was neglected. In this example, the planet’s or-
bital period is ∼10 yrs, the perturber’s orbital period is
∼104 yrs, and the secular time scale is tsecular ∼106 yrs.
We performed a few test runs with these parameters and
with ǫoct = 0.01 (corresponding to eper ≈ 0.6), includ-
ing general-relativistic (GR) precession and found that
extremely high eccentricities 1 − emax ∼ 10−4 can be
reached within ∼108 yrs for the high inclinations i > 80◦

considered (emax may be limited by other physical ef-
fects such as tidal precession). For these parameters, a
flip was suppressed due to the GR precession, but for
equally likely parameters with slightly closer perturbers,
aper . 300AU, the effect of GR precession is overcome
by the octupole and flips are also attainable.

A numerical investigation of the problem studied in
this letter is published simultaneously by Yoram Lithwick
and Smadar Naoz.
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