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We investigate a model where strong noise in a sub-population creates a metastable state in an
otherwise unstable two-population system. The induced metastable state is vortex-like, and its
persistence time grows exponentially with the noise strength. A variety of distinct scaling relations
are observed depending on the relative strength of the sub-population noises.

The phenomenon of noise induced metastability [1–3]
is of importance in ecology [4] and plant biology [5] and
has found practical applications in engineering [6]. The
typical models [1–3] consider periodically modulated one-
dimensional (1d) stochastic systems. The modulation
renders the system deterministically unstable during a
part of the modulation period. An external noise can
prevent the escape for several successive periods of ex-
ternal modulation, trapping the system into a metastable
state. As a result, the noise may cause an increase of the
mean persistence time by a factor of (about) two [1].

Here we consider a different model with two stochastic
degrees of freedom, which we call x and y. The y degree
of freedom (e.g. imbalance between the numbers of two
competing gene alleles) undergoes a strong and fast fluc-
tuations which conserve the total population size x. The
latter experiences a slow evolution under the influence of
a deterministic potential V (x) along with a sign-definite
feedback from the population size imbalance ∝ y2 and
a relatively weak (demographic) noise. We show that,
even if the x-dynamics itself is unstable and prone to
a rapid escape, the strong y-noise can lock it in an ex-

ponentially long-lived vortex-like metastable state. The
corresponding exponent exhibits a variety of non-trivial
scaling regimes, depending on the relative strength of the
noises in the x and y subsystems. A similar model was
shown to describe a two-patch Lotka-Volterra system [7].
More distantly related models were recently discussed in
the context of biochemical regulatory networks [8] and
nanomechanical oscillators [9].

Our model can be cast into the universal form

ẋ = −V ′(x)− y2 + ξx(t) ,

ẏ = −2y + ξy(t) ; (1)

〈ξx(y)(t)ξx(y)(t′)〉 = 2Tx(y)δ(t− t′) ,

where V ′ = dV (x)/dx, and Tx and Ty characterize the
noise strength in the total and differential population
size, respectively. The interesting regime of parameters
is Tx < Ty. The noise effects are substantial when the
population is close to a saddle point. In this case the
properly rescaled deterministic potential takes the form

V (x) = −x3/3− ǫx, (2)
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FIG. 1. (Color online) The quasi-stationary FP state. The
contours represent the probability density P (x, y); the ar-
rows show the probability current density. The system is
symmetric around y = 0, and only the top half is shown.
Tx = 0.05, Ty = 0.5.

where ǫ is the bifurcation parameter, and we have shifted
the x variable to have the bifurcation point at x = 0. In
this form, ǫ > 0 corresponds to a system that is unstable
in the x-direction, and ǫ < 0 represents a stable system.

A simple realization of this model is provided by two

species A and B, which undergo the reaction A + B
λ→

2X , where X is either A or B. This is the well-known
Moran process for modeling neutral genetic drift [10]
where A and B represent two equally fit alleles. This
is the fastest reaction which conserves the total popu-
lation size. In addition, the total population size may
slowly evolve according to e.g. the following set of reac-

tions X
β∓↔ 0 and A + B

α→ A + B + X . In this case
x = (nA + nB − N)/N and y = (nA − nB)/N , where
N = β−/α is the population size close to the bifurca-
tion, and ǫ = 4αβ+/β

2
−
− 1 is the bifurcation parameter.

Under this reaction scheme both species are equally fit,
however, certain configurations (nA ≈ nB) favor a larger
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total population size. In the limit of large population
size N ≫ 1, the corresponding Master equation can be
approximated by a Fokker-Planck equation [11]. In the
vicinity of the bifurcation point, the latter reads

Ṗ (x, y) =−∂x

[

(

−V ′(x)− y2
)

P (x, y)− 2

N
∂xP (x, y)

]

−∂y

[

−2yP (x, y)−
(

λ+
2

N

)

∂yP (x, y)

]

, (3)

where P (x, y, t) is the probability distribution function,
and time is measured in units of 2/β−. Equation (3)
is equivalent to the Langevin equations (1), where the
two “temperatures” are given by Tx = 2/N and Ty =
Tx + 2λ/β−. When the drift rate λ is fast, one has the
strong inequality Tx ≪ Ty.
First we focus on the system exactly at bifurcation,

ǫ = 0. The x-equation takes the form ẋ = x2 − y2 + ξx.
Without noise the y-variable tends to zero, leading to
ẋ = x2 dynamics in the x-direction. This has x = 0 as
the nonlinearly unstable point. An arbitrarily weak x-
noise is sufficient to kick the system out of this fixed point
and set it on the path to unlimited proliferation, x → ∞.
One may think thus that the ǫ = 0 system is destined to
blow up in a very short time. Recall, however, that the y-
noise is substantial. Although 〈y〉 = 0, the mean square
value 〈y2〉 > 0 and is large compared with Tx. One can
then expect the x-dynamics to be governed by the effec-
tive potential Veff(x) = −x3/3 + 〈y2〉x. This potential
exhibits a minimum at x = −

√

〈y2〉, and a maximum at

x =
√

〈y2〉. As a result, a long-lived metastable distribu-

tion, peaked at x = −
√

〈y2〉, can be created. A numeri-
cal solution of the Fokker-Planck (FP) equation (3) sup-
ports this expectation. Figure 1 shows the slowly vary-
ing quasi-stationary distribution observed at late times.
Notably, the probability currents develop two counter-
rotating vortices. Before reaching the point x = y = 0,
the “particle” is kicked in the y-direction, where the x-
evolution is directed toward population contraction. In-
stead of immediately undergoing a population explosion,
the system is trapped in this vortex state. We note that
probability current vortices in non-equilibrium stationary

states – the Brownian vortices – were recently observed
in experiment [12].
Our main goal is to evaluate the lifetime of such a

noise-induced vortex-like metastable state. We start
from qualitative considerations. As a first approxima-
tion one can estimate the mean-square y-deviation in the
harmonic potential y2, cf. Eq. (1), as 〈y2〉 = Ty/2. The
effective 1d potential height (in the x-direction) is there-

fore V max
eff − V min

eff =
√
2T

3/2
y /3, and one expects that

ln tesc ≃
√
2T 3/2

y /3Tx . (4)

Remarkably, the escape time is exponentially increasing

with the y-noise strength Ty, while exhibiting the stan-
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FIG. 2. Simulated escape times for Ty = 0.05 and varying
Tx (ǫ = 0). The straight line has slope of

√
2/3, cf. Eq. (4).

Inset: the limit
√
Tx > Ty.

dard Arrhenius scaling with Tx. Our numerical simula-
tions of the Langevin Eqs. (1), see Fig. 2, confirm Eq. (4)

as long as T
3/2
y /Tx is not too large. At larger values of

this parameter, however, Eq. (4) greatly overestimates
the lifetime of the metastable state.

The reason for this deviation is that for large Ty the
typical potential barrier is too high for the x-motion to
overcome. Then, instead of relying on typical realiza-
tions of y-noise, it is more likely that the system waits
for a rare y-trajectory which stays anomalously close
to y = 0. The probability that the y-motion is con-
fined to the interval |y(t)| < y0 for a time t0 is given
by exp[−Ey(y0)t0]. Here Ey is the lowest eigenvalue of
the 1d FP equation in the y-direction with absorbing
boundary conditions at y = ±y0. It can be estimated
as Ey ∝ Ty/y

2
0, where Ty is the y-diffusion coefficient.

On the other hand, the probability that during the time
interval t0 the x-coordinate will diffuse from x = −y0
to x = +y0 is given by exp(−y20/Txt0), where Tx is the
diffusion coefficient in the x-direction. Maximizing the
product of these two probabilities with respect to y20/t0,
one finds that the probability of the optimal rare fluc-
tuation scales as exp(−

√

Ty/Tx). These estimates sug-

gest that ln tesc ∝
√

Ty/Tx once
√

Ty/Tx < T
3/2
y /Tx, i.e.√

Tx < Ty. This behavior is indeed qualitatively consis-
tent with Fig. 2.

To put these considerations on a more quantitative
basis we shall assume that the dynamics can be sepa-
rated into the fast y-motion and slow x-motion. The
latter adiabatically adjusts to the instantaneous value of
y2(t). We then solve an auxiliary problem of finding the
probability of y-trajectories with a given functional form
〈y2〉 = y20(t). Here y0(t) is an arbitrary slow function of
time, such that y0(±∞) =

√

Ty/2, while the averaging is
taken over the fast y-fluctuations. In the rescaled units,
the fast time scale is taken to be unity, cf. Eq. (1). The
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function y0(t) then evolves on a time scale parametri-
cally larger than this and determined by the parameter

Ty/T
1/2
x . Integrating over an intermediate time-scale ∆t

that is long relative to the fast fluctuations one can then

write
∫ t+∆t

t−∆t [y
2
0(t)− y2(t)]dt = 0. We can thus introduce

the functional constraint δ
( ∫

[y2(t) − y20(t)]dt
)

into the
stochastic functional integral over Dy [13–16] and elevate
it into the exponent with the help of the auxiliary slow

field χ(t). As a result we obtain an effective Lagrangian

Ly =
(ẏ + 2y)2

4Ty
− χ(y20 − y2) , (5)

where the χ-integration runs from −i∞ to i∞. See
Eq. (4) of the supplement [16] for more detail on the
derivation of this equation. Employing the slowness of
the χ(t) field, the Gaussian integral over the fast y(t)
can be evaluated using the Fourier transformation. This
leads to an effective Lagrangian for χ in the form

Lχ=

∫

dω

2π
ln

(

1+
4Tyχ

ω2 + 4

)

− χy20=
√

Tyχ+ 1− 1− χy20.

(6)
Finally, the χ-integration can be evaluated in the saddle
point approximation: χ(t) = Ty/4y

4
0 − T−1

y . This yields
the probability of y-motion conditioned on 〈y2〉 = y20(t):

P [y0] ∝ e−
∫

dtEy(y0), Ey(y0) =
Ty

4y20
− 1 +

y20
Ty

. (7)

Notice that Ey is non-negative and equal to zero if and
only if y20 = Ty/2. Therefore, the condition y20(±∞) =
Ty/2 is necessary for convergence of the integral in
Eq. (7). The saddle point calculation is justified as long
as

∫

dtEy [y0(t)] ≫ 1. A more detailed calculation of
Eqs. (5)-(7) is found in the supplementary material [16].
Having found the conditional probability of y-motion

with a given profile of 〈y2〉, we turn now to the x-
degree of freedom. According to the scale separation
assumption, it is governed by the Langevin equation
ẋ = x2 − y20(t) + ξx(t), where y20(t) is a slow function
of time with y20(±∞) = Ty/2 and y20(0) < Ty/2. Our
goal is to evaluate the escape rate of the x-variable from
its metastable minimum at x = −

√

Ty/2 during the
time when y20(t) is suppressed with respect to its asymp-
totic values. We then maximize this escape rate, taken
with weight P [y0], Eq. (7), against the optimal time-
dependent variance y0(t).
Since the escape rate in the x-direction is expected to

be small, it can be found through an eikonal treatment
of the corresponding FP equation [17]. The proper FP
Hamiltonian has the form

H[x, px; y0(t)] = px[−V ′(x)−y20+Txpx]−Ey[y0(t)] , (8)

where x and px are canonically conjugate variables, and
y0(t) is an external time-dependent parameter. The last
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FIG. 3. Phase portrait of the optimal escape paths for differ-
ent Tx. Lower lines correspond to lower values of Tx. The
momentum has been rescaled by Ty/Tx so that all paths
would coincide if they followed simple activation [assumed
by Eq. (4)].

term accounts for the statistical weight of a realization of
y0(t), given by P [y0], Eq. (7). If y0(t) is an adiabatically
slow function (compared to the time scale of the fast y-
fluctuations), the escape proceeds along the zero-energy
trajectory of this Hamiltonian, which connects the two
fixed points (−

√

Ty/2, 0) and (+
√

Ty/2, 0) on its (x, px)
phase plane, Fig. 3. Putting V (x) = −x3/3, one finds for
the (slowly varying in time) optimal trajectory

px(x; y0) =
1

2Tx

[

y20 − x2 +
√

(y20 − x2)2 + 4TxEy(y0)

]

.

(9)
The corresponding escape time, within exponential accu-
racy, is given by the classical action, i.e. the area of the
phase plane under the zero-energy trajectory

ln tesc[y0] = S[y0] =

∫

√
Ty/2

−

√
Ty/2

px(x; y0) dx. (10)

The final step is to find the optimal y0 realization. This
is achieved by demanding δS[y0]/δy0 = 0, solving for an
implicit function of time y0 = y0(x) and substituting it
back into Eq. (10). This leads to the optimal action, Sopt,
and corresponding escape time ln tesc = Sopt. In Fig. 4
this escape time is compared with our Monte-Carlo sim-
ulations results, and an excellent agreement is observed.
It is easy to show that, for Ty ≪

√
Tx, the optimal

y0 tends to
√

Ty/2 and thus Ey → 0, while Sopt =√
2T

3/2
y /3Tx. We thus recover Eq. (4). In the oppo-

site limit Ty ≫
√
Tx, one finds y0(0) ≪

√

Ty/2. One
can thus simplify Eq. (7) as Ey ≈ Ty/4y

2
0. With this

substitution Eq. (9) can be simplified by the rescaling
x = x̃(TxTy)

1/6 and y0 = ỹ0(TxTy)
1/6, which brings the

action (10) into the form S =
√

Ty/Tx

∫

p̃(x̃; ỹ0)dx̃. The

integration limits are ±(T 2
y /Tx)

1/6 → ±∞ in the limit

of interest, while p̃ =

[

ỹ20 − x̃2 +
√

(ỹ20 − x̃2)2 + ỹ−2
0

]

/2

is a parameterless function. Optimizing it over ỹ0 and
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FIG. 4. Simulated escape times vs. the optimal action
for Ty = 0.05 and varying Tx (ǫ = 0). Inset: the limit

(T 2

y /Tx)
1/6 ≫ 1 (with Ty = 1000). The straight line is

Eq. (11).

performing x̃-integration, one finds

ln tesc =
2π

3

√

Ty

Tx
,

√

Tx ≪ Ty , (11)

which confirms our qualitative estimates below Eq. (4)
and provides the numerical factor. The latter is com-
pared with our Monte-Carlo simulations in the inset of
Fig. 4. Notice that the actual condition for the applica-
bility of the asymptotic result (11) is 1 ≪ (T 2

y /Tx)
1/6.

Again, the population lifetime increases with the y-noise
strength. Notice also that the normal Arrhenius scaling
in the parameter Tx gives way to a stretched exponential
law with Tx

−1/2. A similar transition is known as Efros-
Shklovskii law [18] in the context of hopping transport in
disordered semiconductors.

We consider now deviations from the bifurcation point,
i.e. ǫ 6= 0. If |ǫ| ≫ Ty, the deterministic “force”, cf.
Eq. (2), is very strong, and the y-noise does not affect
the system’s persistence time. At ǫ = ǫc = Ty/2 the
effective force associated with the y-noise is canceled by
the deterministic ǫ-force. This causes a noise-induced
shift in the bifurcation of the x-dynamics. That is, it is
much harder to destabilize the population in the presence
of strong y noise. In the vicinity of this noise-shifted
bifurcation one finds the standard scaling of the lifetime
ln tesc = 4 (ǫc − ǫ)3/2/3Tx, cf. Eq (4).

On the other hand, away from the the noise-shifted
bifurcation, i.e. at |ǫ− ǫc|/ǫc > (

√
Tx/Ty)

2/3, the scaling
changes qualitatively. To find the new scaling we look for
the zero energy trajectory of the Hamiltonian (8) with
ǫ 6= 0 and Ey = Ty/4y

2
0 and optimize the action over

y0(x), as explained above. In this way we find

ln tesc=
2π

3

√

Ty

Tx
S
[

ǫ

(TxTy)1/3

]

,
√

Tx ≪ Ty , (12)
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FIG. 5. Phase diagram of the system as a function of Tx and ǫ
with Ty held constant. The dashed lines represent crossovers
between different scaling relations. In region I, ln tesc =

2π/3
√

Ty/Tx. In region II, ln tesc = 4 (Ty/2− ǫ)3/2 /3Tx. In

region III, ln tesc= πTy/2ǫ
3/2.

where the universal function S(ǫ̃) has the following
asymptotic limits: S(ǫ̃) ≈ 1 − 0.71ǫ̃ for ǫ̃ ≪ 1 and
S(ǫ̃) ≈ 3 ǫ̃−3/2/4 for ǫ̃ ≫ 1. This means that the scaling
of the population lifetime given by Eq. (11) is basically
intact as long as ǫ <∼ (TxTy)

1/3. In the opposite limit,
the escape time scales as

ln tesc = πTy/2ǫ
3/2. (13)

This is independent of Tx. For ǫ > (TxTy)
1/3 the system

can escape even at Tx = 0 via paths with unusually small
y. Figure 5 shows the regions where the three scaling
relations (4), (11), (13) are valid. More detailed results
for ǫ 6= 0 are presented in the supplementary material.

We have focused on the limit where Tx ≪ Ty. In this
regime, the system typically remains in the vortex for
many revolutions before ultimately escaping. There is
then a time scale separation between the fast y-motion
and the slow x-dynamics. In the opposite limit, this sep-
aration no longer exists. However, the system is not
trapped by y-fluctuations in this case and is unstable
unless confined on the mean-field level ((−ǫ)3/2 ≫ Tx).

In summary, we have studied a novel system where
strong noise creates metastability. Increasing the noise
strength Ty increases the lifetime of the (vortex-like)
metastable state. Escape from this state is governed by a
variety of scaling relations depending on the relative role
of Tx (the strength of noise in the total population size)
and Ty (the strength of noise in the differential size).
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