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Flow through lattice networks with quenched disorder exhibits strong correlation in the velocity field, even
if the link transmissivities are uncorrelated. This feature, which is a consequence of the divergence-free con-
straint, induces anomalous transport of passive particlescarried by the flow. We propose a Lagrangian statis-
tical model that takes the form of a continuous time random walk (CTRW) with correlated velocities derived
from a genuinely multidimensional Markov process in space.The model captures the anomalous (non-Fickian)
longitudinal and transverse spreading, and the tail of the mean first passage time observed in the Monte Carlo
simulations of particle transport. We show that reproducing these fundamental aspects of transport in disordered
systems requires honoring the correlation in the Lagrangian velocity.
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Anomalous transport, understood as the nonlinear scaling with time of the mean square displacement of transported particles,
is observed in many physical processes, including contaminant transport through porous and fractured geologic media [1], animal
foraging patterns [2], freely diffusing molecules in tissue [3], tracer diffusion in suspensions of swimming micro-organisms [4],
and biased transport in complex networks [5].

Anomalous transport often leads to a broad-ranged particledistribution density, both in space and time [6–8]. Understanding
the origin of the slow-decaying tails in probability density is essential, because they determine the likelihood of high-impact,
“low-probability” events and therefore exert a dominant control over the predictability of a system [9]. This becomes especially
important when human health is at risk, such as in epidemic spreading through transportation systems [10] or radionuclide
transport in the subsurface [11].

Past studies have shown that high variability in the flow properties leads to anomalous transport [1, 7]. Depending on the
nature of the underlying disorder distribution anomalous behavior can be transient or persist to asymptotic scales [12, 13]. The
continuous time random walk (CTRW) formalism [14, 15] offers an attractive framework to understand and model anomalous
transport through disordered media and networks [1, 5, 16].The CTRW model is intrinsically an annealed model because the
disorder configuration changes at each random-walk step. A particle that returns to the same position experiences different
velocity properties. The validity of the CTRW approach for average transport in quenched random environments has been
studied for purely diffusive transport [e.g., 7] and biaseddiffusion [e.g., 9, 17–19]. Most studies that employ the CTRW approach
assume that transition times associated with particle displacements are independent of each other, therefore neglecting velocity
correlation between successive jumps [20]. Indeed, a recent study of transport on a lattice network has shown that CTRW with
independent transition times emerges as an exact macroscopic transport model when velocities are uncorrelated [9].

However, detailed analysis of particle transport simulations demonstrates conclusively that particle velocities inmass-
conservative flow fields exhibit correlation along their spatial trajectory [17, 21, 22]. Mass conservation induces correlation
in the Eulerian velocity field because fluxes must satisfy thedivergence-free constraint at each intersection. This, inturn,
induces correlation in the velocity sequence along a particle trajectory. To take into account velocity correlation, Lagrangian
models based on temporal [22, 23] and spatial [17, 21] Markovian processes have recently been proposed. These models suc-
cessfully capture many important aspects of the Lagrangianvelocity statistics and the particle transport behavior. In particular,
the study of Le Borgne et al. [17] shows that introducing correlation in the Lagrangian velocity through a Markov processin
space yields an accurate representation of the first and second moments of the particle density. The model is restricted,however,
to particle trajectories projected onto the direction of the mean flow, and the study leaves open the question of whether spatial
Markov processes can describe multidimensional features of transport.

Here, we investigate average transport in divergence-freeflow through a quenched random lattice from the CTRW point of
view. We introduce a multidimensional spatial Markov modelfor particle velocity, and confirm that the model exhibits excellent
agreement with Monte Carlo simulations. We show that accounting for the spatial correlation in the Lagrangian velocityis
essential to capture the fundamental macroscopic transport behavior.

Random Lattice Network.We consider a lattice network consisting of two sets of parallel, equidistant links oriented at an
angle of±α with thex-axis. The distance between nodes isl [Fig. 1(a)]. Flow through the network is modeled by assuming
Darcy’s law [24] for the fluid fluxuij between nodesi andj, uij = −kij(Φj − Φi)/l, whereΦi andΦj are the flow potentials,
andkij > 0 is the conductivity of the link between the two nodes. Imposing mass conservation at each nodei,

∑

j uij = 0,
leads to a linear system of equations, which is solved for theflow potentials at the nodes. A link from nodei to j is incoming for
uij < 0 and outgoing foruij > 0. We denote byeij the unit vector in the direction of the link connectingi andj. A realization
of the random lattice network is generated by assigning independent and identically distributed random conductivities to each
link. Therefore, thek values in different links are uncorrelated. The set of all realizations of the quenched random network
generated in this way form a statistical ensemble that is stationary and ergodic.

We study a simple flow setting of mean flow in the positivex-direction, by imposing a no-flow condition at the top and bottom
boundaries of the network, and fixed values of the potential at the left (Φ = 1) and right (Φ = 0) boundaries.

Once the fluxes at the links are known, we simulate transport of a passive tracer by particle tracking. We neglect diffusion
along links, and thus particles are advected with the flow velocity between nodes. We assume complete mixing at the nodes.
Thus, the link through which the particle exits a node is chosen randomly with flux-weighted probability. The Langevin equations
describing particle movements in space and time are

xn+1 = xn + l
v(xn)

|v(xn)|
, tn+1 = tn +

l

|v(xn)|
. (1)

If xn is the position of theith node, the transition velocity is equal tov(xn) = uijeij with probabilitypij = |uij |/
∑

k |uik|
where the summation is over outgoing links only, andpij = 0 for incoming links. The velocity vectorv in the following is
expressed in(ν, θ) coordinates, in whichν = |v| cos(ϕ)/| cos(ϕ)| is the velocity along a link withϕ = arcos(vx/|v|) and
θ = sin(ϕ)/| sin(ϕ)|, so thatv = [ν cos(α), |ν|θ sin(α)]t. Note thatϕ can only assume values in{−α, α, π − α, π + α}.
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FIG. 1. (a) Schematic of the lattice network considered here, with two sets of links with orientation±α = ±π/4 and spacingl = 1. (b)
Particle distribution at nodes (represented by circles of different sizes) att = 30 for a single realization after injection at the origin att = 0.

The system of discrete Langevin equations (1) describes coarse-grained particle transport for a single realization ofthe
quenched random lattice. Particle velocities and thus transition times depend on the particle position. The particle posi-
tion at timet is x(t) = xnt

, wherent denotes the number of steps needed to reach timet. The mean particle density is
P (x, t) = 〈δ(x − xnt

)〉, where the angular brackets denote both the noise average over all particles in one realization and the
ensemble average over all network realizations. We solve transport in a single disorder realization by particle tracking based on
Eq. (1) with the initial conditionsx0 = 0 andt0 = 0 [Fig. 1(b)]. From this, we obtain the mean particle densityP (x, t) by
ensemble averaging.

To develop a transport model for the average particle density P (x, t), we study average particle movements from a CTRW
point of view. This could be done, for example, by interpreting first-passage time distributions in the CTRW framework and
inferring an optimal distribution of transition times [20]. Here we follow a different rationale and analyze the ensemble statistics
of the Lagrangian velocities because the CTRW model is basedon the assumption that particle velocities sampled at givenspatial
positions along an average trajectory form a Markov process.

Spatial Markov Property. To characterize average particle movement from a CTRW pointof view, we study the ensemble
statistics of the series of Lagrangian velocities experienced by particles along individual trajectories. We consider the transition
probability density to encounter a velocityv aftern+m steps given that the particle velocity wasv

′ aftern steps, which in the
variables(ν, θ) reads

rm(ν, θ|ν′, θ′) =
〈

δ [ν − ν(xn+m)] δθ,θ(xn+m)

〉∣

∣

ν(xn)=ν′,θ(xn)=θ′
. (2)

We study the statistical properties of the Lagrangian velocity v(xn) by particle tracking simulations in103 realizations of
an ensemble of random lattices characterized by a lognormalk distribution with varianceσ2

ln k = 5. The use of a lognormal
distribution is motivated by measurements of conductivityin many natural media [25]. The lattice size is 500×500 nodes and,
in each realization, we release103 particles at the origin. To evaluate the transition probability numerically, the particle velocity
ν is discretized into classes,ν ∈

⋃N
j=1(νj , νj+1). To emphasize the role of low velocities, velocity classes are defined on a

near-logarithmic scale. We define the transition probability matrix

Tm(i, θ|j, θ′) =

∫ νi+1

νi

dν

∫ νj+1

νj

dν′rm(ν, θ|ν′, θ′). (3)

The aggregate transition matrixTm(i|j) =
∑

θ,θ′ Tm(i, θ|j, θ′) shown in Fig. 2a form = 1, clearly indicates that particle
velocities are correlated. The relatively large probabilities in the upper-left and lower-right corners of the transition matrix
reflect flow reversal.

The series of Lagrangian velocitiesv(xn) ≡ vn along particle trajectories can be approximated as a Markovprocess, if the
transition matrix satisfies the Chapman-Kolmogorov equation [e.g., 26], which in matrix form reads

Tn(i, θ|j, θ
′) =

∑

i′,θ′′

Tn−m(i, θ|i′, θ′′)Tm(i′, θ′′|j, θ′). (4)
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FIG. 2. (a) Aggregate transition matrix forN = 100 velocity classes distributed with logarithmic scale. (b) Transition probabilities after
m = 5 steps from direct Monte Carlo computation (blue solid line)and calculated from the Markov assumption (green symbols).Shown are
probability densities for two initial velocity classes: a low velocity class (j = 5, ◦), and a high velocity class (j = 90, ∗). Inset: probability of
returning to the same initial velocity class as a function ofthe number of steps for a high initial velocity (classj = 90).

Specifically, for a Markov process, them-step transition matrixTm is equal to them-fold product of the1-step transition matrix
T1 with itself asTm = T

m. Figure 2c shows the transition probabilities form = 5 steps conditional to a low (j = 5) and high
(j = 90) velocity class given byT5, which is obtained by direct Monte Carlo simulations, and under the Markov assumption
from T

5. The Markov model predicts accurately the transition probabilities, as well as the return probability for any number
of steps [Fig. 2b, inset]. Our analysis suggests that the Markov model captures the Lagrangian velocity statistics accurately.
We repeated the analysis for truncated power-law and the absolute value of Cauchy distributions of conductivity, and found that
the Markovianity assumption holds for these conductivity distributions too. Therefore, a CTRW characterized by a one step
correlation in velocity is a good approximation for describing average transport.

Continuous Time Random Walk Model.Particle movements in the random lattice can, on average, bedescribed by the
following system of Langevin equations

xn+1 = xn + l
vn

|vn|
, tn+1 = tn +

l

|vn|
. (5)

We have already shown that the series of Lagrangian velocities{vn}
∞
n=0 is well approximated by a Markov process and thus

fully characterized by the one-point densityp(v) = 〈δ(v − vn)〉 and the one-step transition probability density

r1(v|v
′) = 〈δ(v − vn+1)〉|vn=v

′ . (6)

The particle density can be written as

P (x, t) =

∫

dv〈δ(x − xnt
)δ(v − vnt

)〉, (7)

in whichnt = max(n|tn ≤ t), x is the position of the node at which the particle is at timet, andv is the velocity by which the
particle emanates from this node. Equation (7) can be recastas

P (x, t) =

∫

dv

∫ t

t−l/|v|

dt′R(x,v, t′), (8a)

in which we defined

R(x,v, t′) =

∞
∑

n=0

〈δ(x− xn)δ(v − vn)δ(t
′ − tn)〉. (8b)



5

The latter satisfies the Kolmogorov type equation

R(x,v, t) = δ(x)p(v)δ(t) +

∫

dv′r1(v|v
′)

×

∫

dx′δ(x− x
′ − lv′/|v′|)R(x′,v′, t− l/|v′|). (8c)

For independent successive velocities, i.e.,r1(v|v
′) = p(v), one recovers the CTRW model [e.g., 14]

P (x, t) =

∫ t

0

dt′R(x, t′)

∫ ∞

t−t′
dτ

∫

dxψ(x, τ), (9a)

whereR(x, t) satisfies

R(x, t) = δ(x)δ(t)

+

∫

dx′

∫ t

0

dt′R(x′, t′)ψ(x − x
′, t− t′) (9b)

and the joint transition length and time density is given by

ψ(x, t) =

∫

dv′p(v′)δ(x − lv′/|v′|)δ(t− l/|v′|). (9c)

In the following, we refer to system (8) ascorrelatedCTRW because subsequent particle velocities are correlated, and to
model (9) asuncorrelatedCTRW because subsequent particle velocities are uncorrelated.

Average Transport Behavior.The average transport behavior is studied in terms of the spatial particle densityP (x, t), its
mean square displacements in longitudinal and transverse directions and the distribution of the first passage time,tf (x), at a
control plane at a distancex from the inlet. We compare the results obtained from direct Monte Carlo simulations to correlated
CTRW and uncorrelated CTRW. Correlated CTRW is parametrized by the one-step transition matrixT1 determined from nu-
merical Monte Carlo simulations. Uncorrelated CTRW is parametrized by the Lagrangian velocity distributionp(v), which is
obtained from Monte Carlo simulations as well.

The particle distribution is non-Gaussian and characterized by a sharp leading edge and an elongated tail [Fig. 3]. The non-
Gaussian features persist even after the center of mass has travelled a distance of about 100 links in the direction of themean
flow. Correlated CTRW captures the shape of the particle plume with remarkable accuracy, including its leading edge, peak,
transverse spread, and low-probability tail near the origin. Ignoring the correlated structure of the Lagrangian velocity leads to
predictions of longitudinal and transverse spreading thatdeviate from the direct Monte Carlo simulation [Fig. 3, insets].

Figure 4a shows the time evolution of the longitudinal and transverse spreading. The Monte Carlo simulation shows that the
longitudinal mean square displacement (MSD) with respect to the center of mass evolves faster than linear with time (slope of
1.33). Both the scaling and the magnitude of the longitudinal spreading are captured accurately by correlated CTRW. Themodel
also reproduces accurately the magnitude and time scaling of the transverse MSD. The uncorrelated model underpredictsthe
magnitude of longitudinal spreading.

Nonlocal theories of transport, including CTRW, are often invoked to explain the empirical observation that the first passage
time (FPT) distribution is broad-ranged [1]. Early arrivaland slow decay of the FPT is also observed in our model system,even
when the conductivity distribution is lognormal and has zero spatial correlation [Fig. 4(b)]. The cumulative FPT distribution from
the Monte Carlo simulation exhibits a significantly slower decay than uncorrelated CTRW. This behavior is accurately captured
by correlated CTRW, suggesting that the velocity correlation along particle trajectories is responsible for the emergence of the
observed asymptotic behavior.

In conclusion, we have shown that the divergence-free condition arising from mass conservation is the source of strong
and nontrivial correlation in the Lagrangian velocity, even when the underlying conductivity field is completely uncorrelated.
Accounting for such correlation in the velocity is important to obtain quantitative agreement for the mean particle density and the
FPT distribution. Here, we have proposed and validated a spatial Markov model of transport on a lattice network that explicitly
captures the multidimensional effects associated with changes in direction along the particle trajectory. This studyopens the
door to understanding the interplay between two sources of velocity correlation: the divergence-free condition and the spatial
correlation in the permeability field. Finally, we suspect that correlation in the Lagrangian velocity exerts an even more dominant
control over mixing (understood as the decay of the varianceof the particle density [27–29]) than it does on spreading. This
remains an exciting open question.

We gratefully acknowledge funding for this research, provided by the DOE Office of Science Graduate Fellowship Program (to
PKK), the Spanish Ministry of Science and Innovation through the project HEART (CGL2010-18450) (to MD), the European



6

! "! #!! #"!
 $!

 %!

 &!

 '!

!

'!

&!

 $!  &! ! &! $!

!

&

$

#'

#%
()#!

 &

x

y

transverse cutlongitudinal cut

*+,-.)/012+

3+11)/456

73+11)/456

! "! #!! #"!

!

&

$

#'

#%
()#!

 &

)

)

FIG. 3. Contour plot of the mean particle density att = 5 × 10
2, computed from direct Monte Carlo simulation (blue solid line), correlated
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