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We study the realizability of scale free-networks with a given degree sequence, showing that
the fraction of realizable sequences undergoes two first-order transitions at the values 0 and 2 of
the power-law exponent. We substantiate this finding by analytical reasoning and by a numerical
method, proposed here, based on extreme value arguments, which can be applied to any given
degree distribution. Our results reveal a fundamental reason why large scale-free networks without
constraints on minimum and maximum degree must be sparse.
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Many complex systems can be modeled as networks,
i.e., as a set of connections (edges) linking discrete ele-
ments (nodes) [1–3]. A characteristic of a network that
affects many physical properties is its degree distribution
P (k), the probability of finding a node with k edges.
Considerable attention has been paid to scale-free net-
works, in which the degree distribution follows a power-
law, P (k) ∼ k−γ [4–10]. In particular, scale-freeness has
been shown to have important implications in the ther-
modynamic limit. For studying the properties of scale-
free networks, several generative models have been pro-
posed [1–4]. However, no models creating networks with
γ < 2 have been found [11, 12], and γ < 2 is observed
only in networks that are relatively small or in which the
power-law behavior has some cutoff [9]. In this Letter,
we explain the absence of large networks that exhibit a
power-law with 0 < γ < 2 in the tail of the distribution.
Specifically, we show that fundamental constraints exist
that prevent the realization of any such network.

It is well known that the mean degree of scale-free dis-
tributions with exponents γ less than 2 diverges in the
thermodynamic limit, i.e., when the number of nodes
N → ∞ [2]. Scale-free networks with γ < 2 would
therefore be called dense networks, whereas networks
γ > 2 are sparse. While sparseness is a common prop-
erty, which is regularly exploited in data storage and
algorithms, also many examples of dense networks are
known [13–15]. It is thus reasonable to ask why there are
no examples of dense scale-free networks. We answer this
question by showing that dense networks with a power-
law degree distribution must have γ < 0. Calling such
networks scale-free is at best dubious because they would
not exhibit the characteristic properties commonly asso-
ciated with scale-freeness for N → ∞.

The absence of dense scale-free networks is explained
by a discontinuous transition in the realizability of such
networks. Below, we show numerically, analytically, and
by a hybrid method proposed here, that the probability of
finding a scale free-network with a given γ is 0 for 0 < γ <
2. We emphasize that these results are not contingent
on a specific generative model, but arise directly from

fundamental mathematical constraints.
The generation of scale-free networks with a given de-

gree distribution can be considered as a two-step proce-
dure. First, one creates a number of nodes and assigns
to each node a number of connection “stubs” drawn from
the degree distribution. The realization of the degree dis-
tribution that is thus created is called degree sequence.
Second, one connects the stubs such that every stub on
a given node links to a stub on a different node, without
forming self-loops or double links. However, not every
degree sequence can be realized in a network. Sequences
that admit realizations as simple graphs are called graph-
ical, and their realizability property is commonly referred
to as graphicality [18]. Graphicality fails trivially if the
number of stubs is odd, as one needs two stubs to form
every link, or if the degree of any node is equal to or
greater than the number of nodes, as it would be impos-
sible to connect all its stubs to different nodes. Below we
do not consider sequences for which graphicality is such
trivially violated, but note that further conditions must
be met for a sequence to be graphical [16, 17].
The main result used for testing the graphicality of a

degree sequence is the Erdős-Gallai theorem, stated here
as reformulated in [17] using recurrence relations:

Theorem 1. Let D = {d0, d1, . . . , dN−1} be a non-

increasing degree sequence on N nodes. Define xk =
min {i : di < k + 1} and k⋆ = min {i : xi < i+ 1}. Then,

D is graphical if and only if
∑N−1

i=0 di is even, and

Lk 6 Rk ∀ 0 6 k < N − 1 , (1)

where Lk and Rk are given by the recurrence relations

L0 = d0 (2)

Lk = Lk−1 + dk (3)

and

R0 = N − 1 (4)

Rk =

{
Rk−1 + xk − 1 ∀k < k⋆

Rk−1 + 2k − dk ∀k > k⋆
. (5)
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This formulation of the theorem has the advantage over
the traditional one [18] of allowing a very fast implemen-
tation of a graphicality test [17].
Equivalently, graphicality can be tested by a recursive

application of the Havel-Hakimi theorem [19, 20]:

Theorem 2. A non-increasing degree sequence D =
{d0, d1, . . . , dN−1} is graphical if and only if the sequence

D′ = {d1 − 1, d2 − 1, . . . , dd0
− 1, . . . , dN−1} is graphical.

To investigate the dependence of the graphicality of
scale-free networks on the power-law exponent γ, we per-
formed extensive numerics, generating ensembles of se-
quences of random power-law distributed integers with
range between 1 and N −1 and γ between −2 and 4. We
tested each sequence for graphicality by applying Th. 1,
and computed for each γ the graphical fraction

g =
G

E
,

where G is the total number of graphical sequences in
the ensemble and E is the number of sequences in the
ensemble with an even degree sum. The results, plotted
in Fig. 1, clearly show two graphicality transitions: For
very large and very small exponents almost all sequences
are graphical. However, at intermediate exponents there
is a pronounced gap where almost no sequence is graph-
ical. The transitions between the two phases become
steeper and the transition points approach γ = 0, and
γ = 2 as the system size is increased.
The dependence of g on sequence length strongly sug-

gests that both transitions are first-order. To verify
their character, we studied Binder’s cumulants U4 ≡

1 −
〈
g4
〉
/
〈
g2
〉2

[21, 22]. For continuous transitions, the
cumulants for different system sizes lie within a finite
interval and cross at the critical point, whereas for first-
order transitions the curves are flat, except for a diverg-
ing negative minimum whose position converges to the
transition point with increasing system size [23–25]. In
the present system the cumulants confirm that the graph-
icality transitions at γ = 0 and γ = 2 are first order.
To understand the origin of the transitions, we focus

on the scaling of the largest degrees and of the number
of lowest degree nodes in the sequences. Below, we show
that the first two largest degrees are of order O (N) for
γ 6 2, while they grow sublinearly with N for γ > 2.
Also, the number of nodes with degree of order O (1) in-
creases linearly with N for γ > 0 and decreases like Nγ

for γ < 0. Then, the transitions can be understood as fol-
lows: If we tried to construct a scale-free network with γ
between 0 and 2, following the Havel-Hakimi algorithm,
O (N) nodes with unitary degree would be used to place
the connections involving the first node, and then there
would be no way to place all the needed edges involv-
ing the node with the second largest degree. Conversely,
when γ < 0, all but a vanishingly small fraction of nodes
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Figure 1: Graphicality transitions in scale-free networks. The
plots of graphical fraction g vs. exponent γ show transitions
at γ = 0 and γ = 2. Binder’s cumulants, in the insets, identify
the character of the transitions and the transition points.

have a degree of order O (N), and for N → ∞ all the
nodes are able to form as many connections as needed.
To see this, calculate the expected maximum degree of

a scale-free sequence

d̂ = max

{
x : N

N−1∑

k=x

k−γ

HN−1,γ

> 1

}
, (6)

where Ha,b is the ath generalized harmonic number of
exponent b

Ha,b =

a∑

t=1

t−b .
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When N ≫ 1, Eq. 6 becomes

N

∫ N−1

x

k−γ

HN−1,γ

dk = 1 . (7)

Because of the dependence of the behavior of the gener-
alized harmonic number on the exponent, we solve this
equation for different values of γ.
Solving the integral for γ > 1 gives

N

(1− γ)HN−1,γ

[
(N − 1)

1−γ
− x1−γ

]
= 1 . (8)

Equation 8, for N ≫ 1 implies

x =

[
N

(γ − 1)HN−1,γ

] 1

γ−1

∼ N
1

γ−1 .

Because of the upper bound of the degrees of a sequence
at N − 1, if 1 < γ 6 2, the value of the largest degree
grows linearly with the number of nodes N .
For γ = 1, the integral in Eq. 7 gives

log (N − 1)− log (x) =
HN−1

N
,

where HN−1 = HN−1,1 is the (N − 1)
th

harmonic num-
ber. To solve the above equation note that the right-hand
side vanishes in the limit of large N . This can be seen by
an application of l’Hôpital’s rule, noticing that for γ > 0

∂

∂N
HN−1,γ = γ [ζ (γ + 1)−HN−1,γ+1]

and

lim
N→∞

HN,γ = ζ (γ) ,

where ζ is Riemann’s zeta function. Then, the solution
of the equation in the thermodynamic limit is x ∼ N .

Next, for 0 6 γ < 1, Eq. 7 yields Eq. 8, hence

(N − 1)
1−γ

− x1−γ =
(1− γ)HN−1,γ

N
. (9)

As in the previous case, the right hand side vanishes for
large N , and the solution is that x ∼ N .

Finally, for γ < 0, from Eq. 8 one gets again Eq. 9.
However, in this case the right-hand side grows as N−γ .
Since γ is negative, one can rewrite Eq. 9 for large N as

(N − 1)
1+|γ|

− x1+|γ| = N |γ| ,

which implies again that x ∼ N .

The same arguments can be applied to the scaling of
the second largest degree, with identical results. Now,
consider the number A of nodes with unitary degree. For
large N , A = N/HN−1,γ. Thus, when γ > 0, A ∼ N ,
whereas, if γ < 0, then A ∼ Nγ .
Then, to formally check the transition mechanism, ex-

plicitly write inequality 1 for k = 1. The left-hand-side
consists of the sum of the largest and the second largest
degrees, which can be obtained using the same argument
as above. To compute the right hand side, first notice
that k⋆ > 2. In fact, by definition it cannot be 0, as
this would imply that the highest degree in the sequence
would be 0. Moreover, in our case it cannot be 1, as
this would imply that the second highest degree in the
sequence would be 1, in contradiction with what demon-
strated above. Also, by the definition of xk, it follows
that x1 = N − A. Thus, applying Eq. 5, the right hand
side is simply 2N−2−A. Therefore, the inequality reads

[
(γ − 1)HN−1,γ

N
+ (N − 1)1−γ

] 1

1−γ

+

[
2 (γ − 1)HN−1,γ

N
+ (N − 1)1−γ

] 1

1−γ

6 2N − 2−
N

HN−1,γ

. (10)

A numerical solution shows that for N ≫ 1 the above
inequality is indeed satisfied only when γ < 0 or γ > 2,
confirming the transition mechanism. Notice, however,
that when N → ∞ almost all the nodes are fully con-
nected for γ < 0, and thus it is not appropriate to refer
to such networks as scale-free.

One can also study the inequality in the presence of a
cutoff in the distribution, by replacing every instance of
the natural upper bound on the degrees, (N − 1), with
the cutoff value. Cutoffs have been observed in real-world
networks [8, 9], and are sometimes imposed for different
purposes, such as making the degree-degree correlations

uniform [26, 27]. Notably, their effect is making the in-
equality always satisfied, and the transitions disappear.

The above treatment indicates that, by applying ex-
treme value arguments, one can build a finite length se-
quence S = {s0, s1, . . . , sN−1} for the purpose of study-
ing the graphicality of infinite systems. A finite sequence
maximizing the degrees of the nodes for a given degree
distribution will best approximate the graphicality of an
infinite sequence, especially since broken graphicality is
always caused by an excess of stubs in some subset of
nodes. Therefore, for a length N , and any degree distri-
bution P (d), the elements of the sequence are given by
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Figure 2: Graphicality of the degree maximizing sequence
(N = 106) given by Eq. 11 for scale-free distributions vs.
exponent γ. The graphicality transitions points are correctly
identified.

the family of functionals

si = max

{
s⋆ : N

dM∑

d=s⋆

P (d) > i+ 1

}
, (11)

where dM is the largest allowed degree. In general, dM =
N − 1, but the full generality of its value allows cutoffs
to be accounted for. Increasing the number of nodes in
the representative sequence will improve the accuracy in
the determination of transition points, as it will better
approximate an infinitely large system.
We computed degree maximizing sequences for power-

law distributions, and tested them for graphicality. The
results, shown in Fig. 2, are consistent with the simu-
lations and with the analytical treatment, showing once
again transitions at γ = 0 and γ = 2.
In conclusion, we showed that the graphicality of

power-law degree sequences undergoes two discontinu-
ous transitions at the values 0 and 2 of the exponent
γ. In the limit of a large number of nodes, no network
with an unbounded power-law degree distribution with
0 < γ < 2 can exist. We emphasize that this result
arises directly from mathematical constraints on the de-
grees of the nodes, and is thus independent of the specific
procedure used for generating the network. It explains
why the scale-free networks commonly observed in nature
have γ > 2 or have a cutoff. Established procedures may
yield 0 < γ < 2 when applied to data from a given finite
network. However, when the network grows or more data
is acquired either a cutoff must exist or γ must increase
above 2 (or decrease below 0). It is possible to gener-
ate large and dense networks with a power-law degree
distribution with γ < 0, but these networks should not
be denoted as scale-free as they do not exhibit the prop-

erties that are commonly associated with scale-freeness.
Any large scale-free network is thus sparse, either because
γ > 2 or because of the presence of a cutoff. This insight
is reassuring as it implies that also numerical methods
which are often needed for analyzing scale free networks
will continue to scale favorably with increasing network
size.

The authors gratefully acknowledge Zoltán Toroczkai,
Hyunju Kim and Chiu-Fan Lee for fruitful discussions
and helpful comments on the manuscript. KEB was sup-
ported by NSF grant No. DMR-0908286.

[1] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47
(2002).

[2] M. E. J. Newman, SIAM Review 45, 167 (2003).
[3] S. Boccaletti et al. Phys. Rep. 424, 175 (2006).
[4] G. Caldarelli, Scale-free networks – complex webs in na-

ture and technology (Oxford University Press, Oxford,
United Kingdom, 2007).

[5] D. J. de Solla Price, Science 149, 510 (1965).
[6] S. Redner, Eur. J. Phys. B 4, 131 (1998).
[7] R. Albert, H. Jeong, and A.-L. Barabási, Nature 401,

130 (1999); H. Jeong et al. Nature 407, 651 (2000); H.
Jeong et al. Nature 411, 41 (2001).

[8] L. A. N. Amaral et al. Proc. Natl. Acad. Sci. USA 97,
11149 (2000); F. Liljeros et al. Nature 411, 907 (2001).

[9] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 98, 404
(2001).

[10] A. Vázquez, R. Pastor-Satorras, and A. Vespignani,
Phys. Rev. E 65, 066130 (2002).

[11] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin,
Phys. Rev. Lett. 85, 4633 (2000).

[12] P. L. Krapivsky, S. Redner, and F. Leyvraz,
Phys. Rev. Lett. 85, 4629 (2000).

[13] V. Spirin and L. A. Mirny, Proc. Natl. Acad. Sci. USA
100, 12123 (2003).

[14] A. H. Y. Ton et al. Science 303, 808 (2004).
[15] P. Hagmann et al. PLoS Biology 6, 1479 (2008).
[16] H. Kim et al. J. Phys. A – Math. Theor. 42, 392001

(2009).
[17] C. I. Del Genio et al. PLoS One 5, e10012 (2010).
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