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Cooperative interactions among sensory receptors provide a general mechanism to increase the
sensitivity of signal transduction. In particular, bacterial chemotaxis receptors interact cooperatively
to produce an ultrasensitive response to chemoeffector concentrations. However, cooperativity be-
tween receptors in large macromolecular complexes is necessarily based on local interactions and
consequently is fundamentally connected to slowing of receptor conformational dynamics, which
increases intrinsic noise. Therefore, it is not clear whether or under what conditions cooperativ-
ity actually increases the precision of the concentration measurement. We explictly calculate the
signal-to-noise ratio (SNR) for sensing a concentration change using a simple, Ising-type model of
receptor-receptor interactions, generalized via scaling arguments, and find that the optimal SNR is
always achieved by independent receptors.

In biological networks, cooperative interactions among
components can sharpen input-output relations, increas-
ing gain and enabling switch-like responses. The best-
known example is the cooperative binding/release of oxy-
gen by hemoglobin, which enables efficient transport of
oxygen between the lungs and tissue. In sensory sys-
tems, a well-studied example of cooperativity is receptor-
receptor coupling in Escherichia coli chemotaxis [1]. For
sensing systems, there is an obvious advantage of high
gain to amplify weak signals [2], particularly when com-
bined with an adaptation system to broaden the dynamic
range [3]. This advantage of high gain from receptor-
receptor interactions raises the question: why has recep-
tor coupling not evolved in other chemical sensing sys-
tems, e.g. quorum sensing and eukaryotic chemotaxis?

If the function of a sensory network is to reliably de-
tect weak signals, then processing of the signal is only
half the story. The other half is the suppression of
noise and for weak signals the signal-to-noise ratio (SNR)
generally governs information transmission and sensory
performance [4]. Cellular signal transduction must con-
tend with both noisy inputs (extrinsic noise), as well as
the noise generated internally by the signal transduc-
tion system itself (intrinsic noise). While the presence
of signaling noise is well appreciated, the connection be-
tween cooperativity and noise has received less atten-
tion [5, 6]. As we will show, receptor cooperativity and
intrinsic signaling noise are inextricably linked via the
statistical mechanics of receptors. The same cooperative
interactions that give rise to enhanced sensitivity nec-
essarily both amplify fluctuations and slow the rate of
receptor-conformational switching, limiting both the re-
sponse time and the ability of the system to reduce intrin-
sic noise by time-averaging. Due to these tradeoffs, it is
unclear when or whether receptor cooperativity actually
increases sensory performance.

The prevailing view of bacterial chemoreceptor opera-
tion is that signal amplification from receptor coopera-
tivity enables the chemotaxis network to reliably detect

shallow gradients with exquisite sensitivity. In this Let-
ter, we challenge this viewpoint by evaluating the strat-
egy of using receptor cooperativity to enhance weak sig-
nal detection in light of the tradeoffs between gain and
intrinsic noise. Specifically, we calculate the SNR for a
simple physical model of receptor-receptor interactions, a
dynamical Ising-type model in which receptors have two
conformational states, active and inactive, and neighbor-
ing receptors prefer to be in the same conformational
state (a.k.a. conformational spread [2]). The input to
the network is the (changing) external ligand concentra-
tion and the output is the time-averaged total receptor
activity. This two-state model is a good description of
bacterial chemoreceptors, in which the active and inac-
tive conformational states are named for their relative
abilities to activate a downstream kinase [7] and the out-
put of the network is the CheY-P concentration, which is
effectively the time-average of receptor activity over the
phosphorylated lifetime of individual CheY-P molecules.

Importantly, our model is the first to both (i) incorpo-
rate the dynamics of receptor switching, which is key to
understanding the reduction in noise by time-averaging
and (ii) base cooperativity on local interactions. Unlike
the dynamic MWC models used in previous work [6], we
invoke no unphysical action-at-a-distance that allows the
entire receptor cluster to flip conformational states si-
multaneously. In fact, a recent study has provided direct
evidence for local interactions underlying the ultrasensi-
tive behavior of the bacterial motor [8].

We consider a cell with a total ofN two-state receptors,
which are divided into m independent 1D chains each
of length n, with nearest-neighbor Ising couplings inside
each chain, given by the Hamiltonian

H = −J
∑

〈i,j〉

σiσj +
1

2

n
∑

i=1

fσi, (1)

where σi = ±1 represents the active/inactive receptor
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states, 〈i, j〉 denotes nearest neighbors, and

f = ∆ǫ+ log

(

1 + [L]/Koff

1 + [L]/Kon

)

(2)

is the free-energy difference between active and inactive
states, which is a function of the ligand concentration
[L], ligand dissociation constants Koff and Kon, and the
“offset energy” ∆ǫ ≡ Eon −Eoff, which is the energy dif-
ference between active and inactive states in the absence
of ligand [9] [10] [11].
When ligand binding/unbinding is much faster than re-

ceptor conformational switching, the stochastic dynamics
of switching is governed by a kinetic Ising model, where
the occupation probablity p(σ1, . . . σn; t) obeys the mas-
ter equation

d

dt
p(σ1, . . . σn; t) = −

(

∑

i

ki(σi)

)

p(σ1, . . . σn; t) (3)

+
∑

i

ki(−σi)p(σ1, . . . ,−σi, . . . σn; t).

(For the case of slow ligand dynamics, see [4].) We as-
sume the switching rates k obey detailed balance and are
local, i.e. depend only on the conformational states of the
receptor and its nearest neighbors. Although the form of
this dependence has not been measured experimentally,
a simple, physically reasonable choice is Glauber dynam-
ics [12], which models interactions of the receptor system
with a heat bath. With this choice,

ki(σi) =
1

2
α

(

1− 1

2
γσi(σi−1 + σi+1)

)

(1− βσi), (4)

where α sets the intrinsic switching rate (typically 103−
104/s), γ = tanh(2J), and β = − tanh(f/2) [13].
We let the model system respond to a small step in

ligand concentration (and associated step change in free
energy ∆f ∼ ∆ log [L]) over a given period of measure-
ment, which we call τavg. We define the average activity
of a receptor to be the probability the receptor is in the
active state, with the total activity A being the sum of
the individual receptor activities. The output of the sys-
tem is the time-averaged change in total activity [14],

∆A(τavg) =
1

τavg

∫ τavg

0

∫ t

0

χ(t− t′)∆f(t′)dt′ (5)

≡ 1

4
R(τavg)∆f, (6)

where the dynamical susceptibility χ relates changes in
the average cluster activity to time-dependent changes
in the free-energy difference and Eq. 6 defines the re-
sponse function R(τavg). The system is assumed to be
pre-adapted to the ambient ligand concentration, such
that the free-energy difference between active and inac-
tive states is zero prior to stimulation (i.e. the system is
adapted to the most sensitive region of the input-output
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FIG. 1. (A) Schematic diagram of cooperatively interacting
receptors. Receptors interconvert between active and inactive
states and preferentially bind ligand in the inactive state. The
interaction energy J between neighbors favors receptors in
the same activity state. (B) The normalized static response
R(∞)/n for closed chains (rings) of various lengths n (for
open chains, see [4]). (C) Response R, (D) noise σ2, and (E)
SNR as functions of coupling strength J for a closed chain of
n = 10 receptors for various averaging times τavg. In (E), the
SNR is normalized by the averaging time.

relation); this assumption appears to be correct for bac-
terial chemoreceptors [9].
The sensitivity to signal is quantified by the static re-

sponse R(∞) = 4
∫∞

0
χ(t)dt, which, when normalized by

chain length, is the factor by which the DC (i.e. infinite
time) response of a coupled receptor is amplified rela-
tive to that of an uncoupled receptor. The normalized
static response R(∞)/n increases as a function of cou-
pling strength from 1 to n, as shown in Fig. 1B. At zero
coupling, J = 0, each receptor behaves independently
and there is no cooperative amplification of the signal.
As the coupling is increased, domains of adjacent recep-
tors begin to effectively switch conformations together
and the amplification R(∞)/n is determined by the size
of these domains.
In practice, many cells have a limited measurement

period and this can decrease the response R(τavg), as
shown in Fig. 1C. For a 1D ring, this dependence takes
the simple form

Rring(τavg) = Rring(∞)

(

1− τ ringc

τavg

(

1− e−τavg/τ
ring
c

)

)

(7)
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where

τ ringc = 1/(α(1− tanh(2J))) (8)

is the response time, which increases exponentially with
coupling strength due to the well-known phenomenon of
critical slowing down [15]. Notice that for any finite av-
eraging time, the response eventually falls to zero with
increasing coupling strength because the system slows
down and cannot respond to the input in the time avail-
able. Intuitively, for large coupling J , the receptors be-
come frozen in an all-active or all-inactive state, with
switching between these states too slow to mediate a
timely response to a changing input.
The intrinsic noise, i.e. the variance in time-averaged

activity, increases monotonically with coupling strength,
as shown in Fig. 1D. For the 1D ring,

σ2
ring(τavg) = σ2

ring(0)T (τavg/τ
ring
c ), (9)

where τc is given in Eq. 8 and

T (x) = 2(x+ e−x − 1)/x2. (10)

For a given J , the maximal value of the noise occurs
for zero averaging time (the “snapshot” limit), and is
proportional to the static response as required by the
fluctuation-dissipation theorem. Averaging for longer
times substantially reduces the noise (via the factor
T (τavg/τ

ring
c )), but time-averaging becomes less effective

with increasing J due again to critical slowing down, as
the slower dynamics increases the correlation time τc, the
time required for fluctuations in activity to decay.
The relative uncertainty in sensing the concentration of

ligand is determined by the signal-to-noise ratio (SNR),
as shown in Fig. 1E, normalized per receptor,

SNR ≡ SNRtotal

N(∆f)2
=

(m∆A(τavg))
2

mσ2(τavg)N(∆f)2
=

R2(τavg)

16nσ2(τavg)
.

(11)
Surprisingly, the optimal value of the coupling strength
J to maximize the SNR is zero for all averaging times.
That is, on a per receptor basis, independent receptors
always have a lower total SNR than cooperative teams
of receptors. For short averaging times, independent re-
ceptors have both a larger response and lower noise than
teams. For longer averaging times, cooperative teams
have a larger response, but independent receptors still
achieve a higher SNR because their rapid switching leads
to more independent samples of receptor activity and
thus to a much lower time-averaged noise.
While the results in Fig. 1C-E are shown only for

n = 10, scaling analysis indicates that increasing the
chain length n will never make cooperative teams favor-
able with respect to uncoupled receptors. In the follow-
ing, we derive how the SNR scales with the only two
length scales in our model: the chain length n and the
correlation length ξ, which is the length scale over which

the conformational states of neighboring receptors are
correlated in an infinite system.
To best realize the cooperativity of a 1D chain of

length n, the coupling strength has to be set to J∗
n, the

smallest J that gives approximately maximal response
(R(∞) ≈ n2), and the averaging time has to be just
long enough for R(τavg) to approach this maximum, i.e.
τavg ≈ τc(J

∗
n). Longer times will reduce the noise, but

by exactly the same factor for both the cooperative team
and independent receptors, ∝ 1/τavg.
For the cooperative team, τavg = τc(J

∗
n) is long enough

that R(τavg) ≈ R(∞), while σ2(τavg) ∼ σ2(0) (i.e.
still roughly in the snapshot limit for noise). By the
fluctuation-dissipation theorem, σ2(0) = R(∞)/4, so

SNR(J∗
n) ≈

R2(∞)

16nσ2(0)
=

R(∞)

4n
≈ n/4 ≈ ξ(J∗

n)/4. (12)

Thus the SNR for the cooperative team is approximately
equal to the chain length. The last approximate equal-
ity holds because the J∗

n required for nearly maximal re-
sponse yields an (infinite-chain) correlation length ξ(J∗

n)
comparable to the actual chain length n.
By comparison, for n independent receptors, the same

averaging time τavg = τc(J
∗
n) is long enough to reach

the static response R(τavg) ≈ R(∞) = n, and for sub-
stantial noise reduction by time-averaging, σ2(τavg) ≈
2σ2(0)/(ατavg), so that

SNR(J = 0) ≈ R2(∞)

32nσ2(0)/(ατavg)
=

n2

8n2/(ατavg)

=
1

8
ατavg ≈ 1

8
ατc(J

∗
n). (13)

Therefore, for cooperative teams to be favorable
with respect to uncoupled receptors requires ξ(J∗

n) >
1
2
ατc(J

∗
n), according to Eqs. 12 and 13. However, this

will never happen for 1D chains because the correlation
time grows faster than the correlation length with in-
creasing J in 1D, specifically τc ∼ ξ2. In Fig. 2 we plot
the ratio of SNRs for independent receptors versus coop-
erative receptors for closed chains.
The ratio never favors cooperative receptors and, in the

long-averaging-time limit, follows the expected scaling ∼
ξ for ξ ≪ n and ∼ ξ2 for ξ ≫ n. A shorter averaging
time only makes things worse for cooperative receptors,
as in this case the expected scaling is still ∼ ξ for ξ ≪ n,
but ∼ ξ4 for ξ ≫ n [4].
Our results naturally generalize to higher-dimensional

coupling. For 2D, the most natural topology for inter-
acting membrane receptors, the ratio of uncoupled to
coupled SNRs for long averaging times τavg ≫ τc scales
as SNR(J = 0)/SNR(J) → nατc/R(∞) ∼ ξz−γ/ν ≈
ξ0.41 [4] [16], as seen in Fig. 2 in the expected regime
ξ ≪ √

n. As in 1D, independent receptors do better
than coupled receptors, but this advantage grows more
slowly with correlation length in 2D.
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FIG. 2. Ratio of the SNR for independent receptors to the
SNR for cooperative receptors as a function of the correlation
length ξ for a 1D ring and a 2D square lattice of n = 100
receptors with periodic boundary conditions, as well as mean
field theory (MFT). Averaging times are ατavg = 100 (solid
curve) and ατavg = ∞ (dashed curve), with power law plots
for comparison (dotted lines).

High dimensional (D ≥ 4), or global coupling of recep-
tors, which could be mediated by the cell membrane or
by rapidly diffusing effectors, is described by the mean
field limit of the Ising model. In this limit, the dynam-
ics of cluster activity reduces to that of an overdamped
harmonic oscillator, and the normalized static response
and correlation time are both equal, RMFT(∞)/n =
ατMFT

c = 1/(1 − ζJ), where ζ is the number of nearest
neighbors. Consequently, for long averaging times, the
ratio of SNRs for independent versus coupled receptors
is constant. Thus, at best, increasing the dimension of
receptor coupling yields parity between cooperative and
independent receptors.

More generally, the universal behavior of Ising mod-
els near the phase transition and a rigorous bound on
Ising critical exponents νz ≥ γ [17] suggest that critical
slowing down is unavoidable and independent receptors
will always optimize the SNR. We have also studied the
addition of other potential noise sources, including slow
ligand dynamics and static variation of receptor offset
energies, and find that independent receptors still yield
the best SNR [4].

In summary, we developed a physical description of
cooperativity based on the principle that allosteric in-
teractions between receptor proteins are inherently local.
From our simple Ising-type model, which encompasses a
broad class of models, we elucidated the relationship be-
tween cooperativity and intrinsic noise. We found that
the slowing down of receptor switching due to coopera-
tive interactions strongly impairs the SNR and that con-
sequently the SNR is always highest for zero receptor
cooperativity, even though the absolute sensitivity is op-
timized for nonzero cooperativity. Since our SNR is nor-
malized by receptor number and stimulus strength, our
results show that (i) for a given small stimulus, inde-

pendent receptors achieve SNR > 1 for the fewest recep-
tors, and (ii) for a given number of receptors, indepen-
dent receptors achieve SNR > 1 for the smallest stimulus
strength.

Our surprising result offers a fresh perspective on bac-
terial chemotaxis, by indicating that the network is not
simply optimizing SNR, since the observed receptor co-
operativity in this system reduces the SNR by a factor
of ∼ 50 [18]. More generally, our result reveals that the
benefits of cooperativity for sensing are far from obvious,
potentially explaining the absence of receptor coopera-
tivity in many sensory networks.
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