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Abstract

The nanodynamics of ferroelectric ultrathin films made of PbTi0.6Zr0.4TiO3 alloy is explored via

the use of a first-principles-based technique. Our atomistic simulations predict that the nanostripe

domains which constitute the ground state of ferroelectric ultrathin films under most of electric

boundary conditions oscillate under a driving ac-field. Furthermore, we found that the atomically

thin wall, or nanowall, that separates the nanodomains with different polarization directions be-

haves as an elastic object and has a mass associated with it. The nanowall mass is size-dependent

and gives rise to a unique size-driven transition from resonance to relaxational dynamics in ultrathin

films. A general theory of nanodynamics in such films is developed and used to explain all com-

putational findings. In addition, we found an unusual dynamical coupling between nanodomains

and mechanical deformations that could potentially be used in ultrasensitive electromechanical

nanosensors.

PACS numbers: 77.80.Fm, 77.55.fg, 77.55.hj

1



Nanosize objects are known to have properties that are very different from their bulk

counterparts. For example, ferroelectric nanostructures exhibit a variety of dipole patterns

and states that are prohibited in the bulk [1–4]. Such nanostructures have become a subject

of intense scientific and technological interest recently, thanks to their potential for device

miniaturization [5, 6] and a variety of unusual phenomena [7, 8]. For example, nanoscale

ferroelectric films and superlattices can exhibit nanostripes that are nanoscopic regions of

“up” and “down” polarizations [2, 9, 10]. Interestingly, the nanostripes size and periodicity

depend on the film thickness and follow the Kittel law down to thicknesses of just a few

unit cells [11]. The nanostripes were predicted to have an unusual evolution under applied

dc electric fields that includes the formation of nanobubbles [12]. A recent study [10] has

reported that the velocity of the nanodomain walls that separate the nanostripes of the

“up” and “down” polarization direction does not follow the Merz’s law [13] that governs

dynamics of larger domains [13, 14]. These recent findings seem to suggest that, while the

static properties (such as nanodomain morphology at equilibrium) may follow the general

trends and laws for ferroelectric domains, their dynamical properties deviate substantially.

Such dynamical properties at nanoscale are of technological importance since they are at the

heart of polarization switching [5, 6] (and, therefore, ultradense ferroelectric memory tech-

nology) and contribute to most of the materials responses such as dielectric and piezoelectric

responses [15] (and therefore may play an important role in nanoscale ferroelectric sensors,

actuators and others). Given the need for device miniaturization and strong deviation of

ferroelectrics nanoscale dynamics from the dynamics of their macroscopic counterparts, the

deep atomistic knowledge of ferroelectrics nanodynamics is highly desirable. In particular,

one may wonder if and how the intrinsic dynamics of ferroelectric domains will change at

nanoscale. Is a nanowall (the area that separates nanodomains of different polarization

direction) an elastic object and will it follow the dynamical models developed for these ob-

jects? What is the characteristic frequency range for the nanostripes dynamics and how

does it scale with their size? What type of intrinsic dynamics is associated with nanowalls

and how different is it from the dynamics of larger domains? Are there any novel dynamical

phenomena associated with nanoscale? To answer the questions about intrinsic fundamen-

tal dynamics of ferroelectric nanodomains one needs to subject these domains to a driving

ac-field of sub-switching amplitude, which is the amplitude smaller than the coercive field.

To the best of our knowledge, such studies have not been carried out for nanostripes which
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has led to a gap in our understanding of the intrinsic dynamics of nanodomains.

In this Letter we take advantage of accurate first-principle-based simulations to reveal

the intrinsic dynamics of nanodomains. We first demonstrate that the nanodomain walls

oscillate under driving ac-field of sub-switching amplitude, which brings such nanowalls into

the general class of objects with oscillatory dynamics. Secondly, we reveal that nanowalls can

exhibit two types of intrinsic dynamics (resonance and relaxation) at the same frequencies.

This is just the opposite of our current understanding of larger scale domain walls, where we

expect resonance dynamics at high-frequencies and electric fields and relaxational dynamics

(domain wall creep) at lower frequencies and electric fields. Thirdly, we prove that at

nanoscale the dynamics is determined by the domain size which manifests itself via a unique

size-driven transition from relaxational to resonance dynamics.

We used classical molecular dynamics (MD) with the force-field derived from first-

principles-based effective Hamiltonian [16–18] to investigate nine ferroelectric ultrathin films

made of PbTi0.6Zr0.4TiO3 ferroelectric alloy and with thicknesses ranging from 2 to 20 nm.

The degrees of freedom for the Hamiltonian include a local soft mode which is propor-

tional to the local dipole moment, homogeneous and inhomogeneous strain variables [26].

This approach has been successfully applied to study static and dynamical properties of

PbTixZr1−xTiO3 alloys [3, 4, 9, 19]. We simulate films grown along [001] direction and

subject to epitaxial compressive strain and realistic partial screening of the surface charge.

Technically, we model compressive strain of -2.64% by freezing some components of the

homogeneous strain tensor [9], while the total surface charge is screened by 84% using the

computational approach of Ref. [18]. In our setup x, y and z-directions are chosen along

[100], [010], and [001] crystallographic directions with z-direction being perpendicular to the

film. Periodic boundary conditions are applied along the x- and y-directions. The films were

first annealed from T =2000 K down to T =10 K in steps of ∆T =100 K. For each temper-

ature we equilibrate the dipoles by simulating NPT ensemble using MD with Evans-Hoover

thermostat and barostat mimicked via PV term in the effective Hamiltonian [20, 21]. Tech-

nically we used 40,000 MD steps with each step being 0.5 fs. Ground state dipole patterns of

these films consist of periodic nanostripe domains of alternating polarization (180◦ domains).

The morphology of these nanostripes is in excellent agreement with experimental findings

[2] and given in Fig.1. An average out-of-plane component of the local dipole < qz > is the

key quantity for this study and is shown in Fig.1(b). Inside a domain the dipole’s magnitude
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is nonuniform with the longest (shortest) dipoles found in the center (far end) of a domain.

This pattern is a consequence of a film’s tendency to minimize the polarization gradient

through the adjustment of the dipole’s magnitude. As the film thickness increases so does

the magnitude of the dipoles, while the shape of the profile flattens. The nanowalls are one

unit cell thick. The lateral size of the domains ranges from 1.6 to 5 nm and follows the Kittel

square root law (see Fig.1(e)). To study the oscillatory dynamics of these nanowalls we turn

to non-equilibrium MD [20] and apply sub-switching ac electric field with frequencies 1 GHz

- 4 THz along the film’s out-of-plane direction at T = 10 K [27]. Under the electric field,

the dipoles near the nanowalls flip to align with the field which leads to a sideways motion

of the domain wall. Since the direction of the electric field alternates, so does the direction

of the domain wall motion resulting in the oscillatory dynamics of the nanowall. Typically

we simulate at least thirty periods of ac field to achieve steady state.

We first focus on the oscillatory dynamics in the thinnest film and trace the time evolution

of the average nanowall’s displacement from its equilibrium position ∆X . This displacement

is obtained from the count of dipoles flipped during the simulation. After the first few

transient oscillations the dynamics reaches its steady state where the displacement follows

the harmonic solution ∆X = X sin(ωt + φ), indicating that the nanowall moves as an

elastic object. Here X is the amplitude of the nanowall’s displacement, ω is the ac field

frequency, t is time, and φ is the phase-shift with respect to the electric field. By analyzing

the nanowall’s response to an electric field of different frequencies we obtain dependences

X(ω) and φ(ω) given in Fig.2, and then combine them into a complex response function

η(w) = X cosφ + iX sin φ. Below 0.3 THz the domain response is independent of the

frequency (Fig.2(a)) with the nanowalls oscillating in phase with the electric field (Fig.2(b)).

Above 1.5 THz the nanowalls have difficulty following the electric field as indicated by the

drastic decrease in the amplitude X and increase in phase-shift φ. Surprisingly, there are

two peaks in the amplitude of nanowall’s oscillations that occur at 0.7 THz (low-frequency

peak) and at 3.2 THz (high-frequency peak). Existence of these peaks suggests that the

nanowalls exhibit a resonance dynamics and must have a mass associated with them.

We develop a general theory of nanowall dynamics. Since a nanowall behaves as an elastic

object, we use the mathematical model of a damped harmonic oscillator to postulate the

nanowall’s response function α(t) = γe−
t

τ cos(ω0t + ψ), where γ and ψ are parameters to

be determined later, τ is relaxation time, ω0 is the intrinsic, or characteristic, frequency of
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the nanowall. The response function describes the response of the domain wall to a delta-

function excitation and incorporates two mechanisms: exponential relaxation and elastic

vibrations near the equilibrium position. The exponential relaxation occurs if the dipoles

near the domain walls can be considered as rigid and flip under the application of an electric

field with the probability proportional to 1−e−t/τ . Elastic vibrations of the domain wall may

occur if the dipoles near the domain boundary behave as elastically bound charges that may

exchange their positions during elastic vibrations. Convolution of the response function with

“step-down” electric field gives a decay function which describes how a displaced nanowall

attains equilibrium position after the external field is suddenly removed. For our α(t) the

decay function is ∆X(t) ∼ e−
t

τ cos(ω0t). While the response function contains complete

information about the dynamics of the domain wall, it cannot be directly obtained from

the domains dynamics under an ac electric field. We will, therefore, use a complex response

function η(w) =
∫

∞

0
α(t)eiωtdt that describes the nanowall’s response to an ac electric field

E: ∆X = η(w)E. Following the standard integration technique [22] we obtain

η(w) =
1

2
∆η

(

1− iω0τ

1− i(ω0 + ω)τ
+

1 + iω0τ

1 + i(ω0 − ω)τ

)

(1)

where ∆η = γτ cosψ and ω0τ = − tanψ. Fitting our numerical data from Fig.2 using the

analytical function of Eq.(1) will reveal if a nanowall indeed moves as an elastic object, in

which case the fitting parameters ω0, τ , ∆η will determine the nanowall’s response function

α(t).

A sum of two analytical functions η1(w) + η2(w) is used to simultaneously fit low- and

high-frequency processes (indexes 1 and 2, respectively) associated with the two peaks in

X(ω). For the thinnest film we obtained ν0,1 = ω0,1/2π = 0.95 THz, ν0,2 = 3.00 THz,

τ1 = 0.29 ps, τ2 = 0.36 ps, ∆η1|E| = 0.5 nm, ∆η2|E| = 0.05 nm [28]. The ratios ν0,i/τi

indicate that low- (high-) frequency process behaves as a damped (underdamped) harmonic

oscillator.

Figs.3(a)-(c) give the characteristic parameters ω0,i, τi, ∆ηi for all other films. We first

focus on the high-frequency process (shown with diamonds). The characteristic frequency of

this process increases with the film’s thickness and stabilizes around 4.7 THz. This coincides

with the frequency of A1 mode [23] and suggests that the high-frequency process is associated

with the soft mode dynamics, or the dynamics of individual dipoles. This dynamics is

intrinsic to the material and independent of domains. In additional calculations we indeed

5



find that the characteristic frequencies of the dipoles in the films are very close to w0,2. This

confirms that the high-frequency process is associated with the intrinsic dipoles’ dynamics in

the soft mode, which couples to the electric field to produce large resonance vibrations. The

dipole’s vibrations near the nanowalls facilitate the dipoles’ flip and, therefore, contribute

to the domain wall dynamics. Overall, high-frequency process contributes about 10% to the

nanowall’s dynamics.

We next focus on the low-frequency process (shown with squares in Figs.3(a)-(c)). The

intrinsic frequency ω0,1 of such process decreases rapidly with the film’s thickness and van-

ishes at the critical thickness of 7.4 nm. By substituting ω0 = 0 in Eq.(1) we obtain the

complex response function for thicker films η(w) = ∆η
1−iωτ

which describes Debye relaxation.

Debye relaxation is usually found in materials with order-disorder dynamics. In other words,

a film undergoes an exotic size-driven transition from resonance to relaxational dynamics at

a critical thickness of 7.4 nm. Moreover, the transition is gradual as evident from a compar-

ison of normalized decay functions plotted for films of different thicknesses (Fig.3(d)). The

dynamics embodied in these plots is striking: a displaced nanowall in a thin film will make

a few oscillations before returning to its equilibrium position, while a nanowall in a thicker

film will relax exponentially to its equilibrium position.

To identify the driving force for such an unusual transition we calculate the mass of a

nanowall. It was proposed [24] that the effective mass of a domain wall can be estimated

from the kinetic energy of ions in those dipoles that flip as the wall propagates. Using

similar arguments we derived a formula for a nanowall’s mass per unit area a2: MNW =

m(< qz > /Z∗a)2, where m and Z∗ are the ionic mass and charge of a dipole, and a is the

lattice constant. This formula suggests that the nanowall’s mass is not constant but follows

the size dependence of < qz > (see Fig.1(b)). Therefore, at nanoscale the domain wall mass

becomes a size and/or shape property rather than just a material property. As the thickness

of the film increases, the mass of the nanowall increases as well (Fig.3(e)). In the elastic

regime the characteristic frequency of a nanowall is inversely proportional to the nanowall’s

mass, which explains the decrease in w0,1 that occurs for thinner films (Fig.3(b)). For films

thicker than 7.4 nm, the nanowall becomes too heavy thereby causing the film to transition

into relaxational dynamics.

To confirm whether the type of the oscillatory dynamics is determined by the nanowall’s

mass, we conduct additional calculations on a 13 nm film (MNW = 2.2 ·10−9 kg/m2). Our
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aim is to convert the dynamics of this film from relaxation to resonance by reducing MNW

in two different ways: (a) decreasing the ionic masses in the local dipole to yield MNW =

1.3 ·10−9 kg/m2; (b) reducing < qz > to yield MNW = 0.8 ·10−9 kg/m2 [29]. In both cases

the film was indeed converted into resonance dynamics as evident from the decay functions

plotted in Fig.3(f). We therefore conclude that the nanowall’s dynamics is controlled by the

nanowall’s mass, which in turn depends on the nanodomain size [30].

Fig.3(a) shows that in the relaxation regime τ1 increases linearly with the film thickness

which suggests that the dispersion frequency (which is inversely proportional to the relax-

ation time) should decrease as the film thickness increases. Extrapolation of our data to

millimeter thicknesses [31] yields dispersion frequencies in the GHz range, which is in good

agreement with some experimental and theoretical findings [25].

We next discuss how domain propagation occurs at nanoscale. For many decades it was

believed that in bulk domains propagate through nucleation and growth of a triangular

nucleus. Recently however a model of a small square nucleus was proposed [14]. In utrathin

films the domain propagation is not described by any of these models but rather has its own

unique pattern. We found that the nanowall propagates inhomogeneously with polarization

reversal originating at the surface of the film and then advancing into its interior. This can

be traced to a depolarizing field which rotates the surface dipoles in-plane to annihilate the

open flux (see the domain closure pattern in Fig.1(a),(c),(d)). As a result the surface dipoles

have the smallest out-of-plane component and, therefore, are easiest to flip.

We repeated all simulations in the presence of dynamical deformations that com-

press/stretch the films periodically along the out-of-plane direction. Such deformations may

be caused by the vibrations of the substrate, laser pulses or dynamical change of stresses.

The deformation is modeled as a periodic variation of the out-of-plane lattice constant

c(t) = ceq +∆c sin(ωct + χ), where ceq and ∆c are the equilibrium lattice constant and the

amplitude of the deviation from ceq, ωc is the frequency of the periodic load, and χ is a

phase-shift with respect to electric field. For all the films we observe a sharp peak in the

displacement X(ω) at ω = 0.5ωc (see Fig.4), which can be explained as follows. In the

absence of any electric field the out-of-plane dipole component |qz| is maximized when c is

at maximum, or ωct + χ = π
2
+ 2πn (piezoelectric coupling). On the other hand, under an

ac electric field, but in the absence of dynamical load, |qz| ∼ | sin(ωt)| and is maximized

at ωt = π
2
+ πm. Both maximums occur at the same time if ω = 0.5ωc and will cause
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resonance vibrations. Such dynamical coupling can find useful applications in ultrasensitive

nanomechanical sensors.

In summary, we have studied the intrinsic nanodynamics of ferroelectric ultrathin films

with nanodomains. Our first-principles-based insight revealed that such nanodynamics is

qualitatively different from the dynamics at larger scale and exhibit numerous exotic phe-

nomena. Surprisingly, some of them, such as dynamical coupling, may even be used in future

superior nanodevices.
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FIG. 1: (color online). Domains morphology. (a) Two-dimensional dipole pattern in a cross-section

of 6.4 nm thick film. Dashed lines indicate the nanowalls. (b) Dipole moment profiles < qz(x/L) >

for films with thicknesses 2, 3.2, 4.8, 6.4, 8.4, 10.8, 13.2, 16.0 and 19.2 nm. The average is taken

over the dipoles having the same y- and z-coordinate. The arrow indicates the direction of the film

thickness increase. (c) and (d) Three-dimensional slices of dipole patterns in 2 and 19.2 nm thick

films, respectively. (e) The dependence of the domain width D = L/2 on the film thickness W .

Solid circles represent our computational data, while empty circles represent experimental data for

Fα phase from Ref.[2]. The line gives the square root fit for the computational data.
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FIG. 2: (color online). Frequency dependent response of a nanowall to the electric field in a 0.2

nm thick film. The arrows indicate positions of the peaks.
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FIG. 3: (color online). Characteristic parameters of the nanowalls’ dynamics. Relaxation times

τi, intrinsic frequencies ω0,i and response strengths ∆ηi are plotted as functions of film thickness

in panels (a), (b) and (c), respectively. (d) Normalized decay functions for films. The arrow

indicates the direction of the film thickness increase. (e) Nanowall mass as a function of the film

thickness. Diamonds represent the masses calculated using the average dipole moments in the whole

nanodomain, while squares represent the masses calculated using the average dipole moments near

the nanowall. The later one is used for further analysis. (f) Decay functions for 13.2 nm thick film

as obtained from calculations where the nanowall’s mass is varied. The nanowalls masses are given

in units of 109 kg/m2.
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