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The present state-of-the-art in cooling mechanical resonators is a version of “sideband” cooling.
Here we present a method that uses the same configuration as sideband cooling — coupling the
resonator to be cooled to a second microwave (or optical) auxiliary resonator — but will cool
significantly colder. This is achieved by varying the strength of the coupling between the two
resonators over a time on the order of the period of the mechanical resonator. As part of our analysis,
we also obtain a method for fast, high-fidelity quantum information-transfer between resonators.
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There is presently a great deal of interest in cooling
high-frequency micro- and nano-mechanical oscillators to
their ground states. This interest is due to the need to
prepare resonators in states with high purity to exploit
their quantum behavior in future technologies [1, 2]. The
key measure of a cooling scheme is the cooling factor,
which we will denote by fcool. The cooling factor is the
ratio of the average number of phonons in the resonator
at the ambient temperature, nT , to the average number
of phonons achieved by the cooling method, which we
will denote by 〈n〉cool. The present state-of-the-art for
cooling mechanical resonators is sideband cooling, which
was originally developed in the context of cooling trapped
ions [3–5]. This method is a powerful and practical tech-
nique, able to achieve large cooling factors, and these
have been demonstrated in the laboratory [6–16].

In the context of mechanical resonators, sideband cool-
ing involves coupling the resonator to be cooled (from
now on the “target”) to a microwave or optical resonator
(the “auxiliary”) whose frequency is sufficiently high that
it sits in its ground state at the ambient temperature.
Sideband cooling uses a linear coupling between the res-
onators, which in practice is usually obtained from a non-
linear “radiation-pressure” interaction by strongly driv-
ing the auxiliary [5]. If we denote the annihilation op-
erators for the target and auxiliary by a and b, respec-
tively, then the Hamiltonian of the two linearly-coupled
resonators is

H = ~ωa†a+ ~Ωb†b+ g cos(νt)xaxb, (1)

where xa = a+a† and xb = b+b† are the position opera-
tors of the respective resonators. The coupling is modu-
lated at the difference frequency between the resonators,
ν = Ω − ω. This down-converts the high frequency of
the auxiliary resonator so that the two resonators are ef-
fectively on-resonance, and thus exchange energy at the
coupling rate g. With this frequency conversion, the aux-
iliary constitutes a source of essentially zero entropy (and

thus zero temperature) for the target resonator [17].

When the rate of the coupling, g, is much smaller
than the target resonator frequency ω (so that one is
within the rotating-wave approximation (RWA)— see,
e.g. [18]), then the linear coupling between the resonators
merely amounts to excitation (phonon/photon) exchange
between the two. If the damping rate of the auxiliary, κ,
is now fast enough, then the excitation exchange, com-
bined with the relatively fast damping of the auxiliary at
effectively zero temperature, extracts the phonons out of
the target. If the coupling to the resonator is perturba-
tive (g � ω), the cooling factor is merely the ratio of the
phonon extraction rate to the resonators damping rate γ.
The extraction rate cannot always be obtained analyti-
cally, but if we denote it by Γcool, then 〈n〉cool = nT /fcool,
where the cooling factor is fcool = Γcool/γ . Note that
the extraction rate is bounded by the rates g and κ. For
sideband cooling, the RWA requires g � ω and κ � ω,
limiting the cooling factor.

Here we demonstrate that one can cool significantly
better than traditional sideband cooling by using quan-
tum control to go beyond the RWA, into the ultra-strong
coupling regime g ∼ ω. We first show that a particular
time-dependence of the coupling rate, g(t), can achieve
a high-fidelity transfer of quantum states between the
target and auxiliary resonators within a single resonator
period. As pointed out in [19], “state-swapping” is one
way to achieve cooling, as this process will load the cold
state of the auxiliary into the target [20]. In fact, the
phonon/photon exchange of the RWA implements state-
swapping in a time of π/(2g) [22]. However it was shown
in [21] that using this to cool (which means running tradi-
tional sideband cooling, but now only for a single swap-
time) is little better than the usual approach. In con-
trast, we show here that numerically optimized control
sequences will achieve significantly better cooling factors.
This is because they allow one to circumvent the RWA re-
striction that g � ω, and thus swap the energy out of the
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resonator significantly faster (namely, within a single os-
cillation period). Further, this method can achieve these
lower temperatures over a much wider range of values of
the auxiliary damping rate, κ. While our method is quite
practical, because it requires a relatively small modifica-
tion to the existing sideband cooling scheme, and per-
forms at least as well as sideband cooling for any value of
g, achieving the lowest temperatures does require ultra-
strong coupling (g ∼ ω). Previously nano-resonator ex-
periments had only achieved small values of g, but re-
cently a tremendous increase in g was demonstrated in
an experiment by Teufel et al. [14]. This has brought g
within a factor of ten of ω, and further increases appear
feasible. The present method is therefore timely, as we
anticipate that near-future experiments will be able to re-
alize it. We note that Machnes et al. [23] have previously
devised a way to go beyond the RWA for trapped-ions,
where the auxiliary system is a qubit. However, their
method is not feasible for nano-resonators, certainly with
near-future technology, because it requires g � ω.

To begin our analysis we first consider the problem of
engineering a fast, high-fidelity state-swap between two
linearly coupled resonators, as this is an important prob-
lem in its own right. Fast operations on quantum infor-
mation are important due to the the ever present effects
of decoherence. To obtain such a state-swap, and thus
an efficient energy transfer without the RWA, we examine
the algebra generated by the linear coupling in conjunc-
tion with the free Hamiltonians of the resonators. The al-
gebra of these three Hamiltonians suggests that it should
be possible to engineer a perfect state-swap by concate-
nating the evolutions generated by the Hamiltonians in a
process of “quantum control” [24]. Up to local operations
on each resonator, such a concatenation is equivalent to
varying the coupling g with time. This would allow us
to obtain efficient energy transfer when g ∼ ω, not only
achieving faster state-swapping, but also better cooling.

To explore the above conjecture, we simulate the evo-
lution given by the Hamiltonian in Eq.(1), in which g is a
function of time. Since Ω is typically much greater than
ω (by a factor of at least 100), we may assume that the
frequency conversion is exact, and set Ω = ω and ν = 0.
The corrections to this approximation are of the order of
(ω/Ω)2. (This is, in fact, an RWA for the frequency Ω,
which is distinct from the RWA for the target frequency
ω, required by sideband cooling.) We prepare the target
resonator in a state that is confined to the space spanned
by the 12 lowest Fock states, and completely mixed on
that space. The auxiliary is prepared in the ground state,
and the resonators evolved for a specified time. This al-
lows us to determine the quality of the swap merely by
calculating the purity of the final density matrix for the
target resonator. If this state is pure, then the evolution
has successfully transferred all the quantum information
to the auxiliary resonator. We evolve for a single period
of the target resonator, and dividing this time into five

equal intervals of duration ∆t, we parametrize g(t) by
making it piecewise-constant on these intervals. Finally
we perform a numerical optimization, using a Quasi-
Newton line search method [25], to determine the five
piecewise-constant values for g(t). For the simulation we
use the basis of Fock states, including the lowest 25 states
for each resonator. This achieves an essentially perfect
state-swap (a final purity of 0.999977) with the following
five values of g/ω: (1.78, 1.45, 2.44, 1.61, 0.195). As a sec-
ond example, we find that a state-swap with a purity of
0.999991 can be obtained in 0.7 of the resonators period,
with the values (2.76, 0.474, 3.73, 0.78, 2.59).

The above results show that, in the absence of deco-
herence, state-swapping in less than one period is within
the “control space” of the linear coupling. But this does
not tell us how well we can transfer the cold auxiliary
state to the hot resonator in the presence of damping.
Damping is equivalent to a continuous measurement pro-
cess [21, 26], and this inhibits the transfer of energy to
the auxiliary due to the quantum Zeno effect. We must
therefore simulate the optimized cooling in the presence
of damping, but it is impractical to do this with the sim-
ulation method used above, as the size of the required
superoperators is too large. Fortunately in the case of
cooling we are only interested in the average phonon
number, given by 〈n〉 = 〈a†a〉, which is a second moment
of operators a and a†. Because the dynamics of the res-
onators is linear (that is, the evolution can be described
by a set of linear quantum Langevin equations [27–29])
one can derive a closed set of equations for the variances
and covariances of the annihilation operators. Because
the means of these operators are zero in thermal states,
and remain zero during the evolution, the covariances are
equal to the second moments.

To describe the damping, we use the Markovian version
of the Brownian-motion master equation [29, 30]. If we
define the vector x ≡ (a, a†, b, b†)t, then the matrix of
covariances is C ≡ 〈xxt〉 − 〈x〉〈xt〉. The equation of
motion for C is

Ċ = AC + CAt +G, (2)

where

A =


−iω − γ/2 γ/2 −ig −ig

γ/2 iω − γ/2 ig ig
−ig −ig −iω − κ/2 0
ig ig 0 iω − κ/2

 ,

G =
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)
0 0

γ
(
nT + 1

2

)
−γ
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0 0 0 κ(naux + 1)
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 ,

and naux is the initial average number of photons in the
auxiliary resonator.

We now wish to determine the function g(t) that gives
the minimum value of 〈a†a〉 after a fixed time interval. To
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FIG. 1. (Color online) The average phonon number, 〈n〉cool, achieved by the cooling method presented here, compared
to sideband cooling, as a function of the damping rate of the auxiliary resonator, κ, and for four values of γnT /ω. The
values obtained by sideband cooling are given by the circles/dashed line (red online). The circles/solid line give the values
achieved by the present cooling method, in which g is a time-varying pulse. The time required for the cooling pulse, τ ,
varies with κ. As examples, for plot (a), from left to right, to obtain the values given by the circles we used τω/(2π) =
0.5, 0.55, 0.73, 1, 1, 1.5, 2, 2, 3, 5.3, 6. For plot (c), the pulse times are τω/(2π) = 0.55, 0.6, 0.6, 0.6, 0.8, 0.7, 0.8, 1, 1.6, 1.6, 1.8, 2, 2.

do so we take the same approach as above, choosing g to
be piecewise-constant. We wish to determine the optimal
cooling over a broad range of the relevant parameters,
and compare this to sideband cooling. Measuring time
in units of 1/ω, the important parameters are the damp-
ing rates of the target and auxiliary (respectively γ/ω
and κ/ω), and the average number of thermal phonons
in the target at temperature T , nT . By examining the
equations of motion, we see that so long as nT � 1, to a
good approximation the evolution, and thus the cooling,
depends only on the product of γ and nT , rather than
each separately. Since nT � 1 is the relevant regime for
present experiments, we therefore need to determine the
optimal cooling as a function of κ/ω and (γ/ω)nT .

The thermal occupation of the auxiliary at the ambient
temperature, naux, is very small with present technology.
For example, a 10 GHz stripline resonator at 50 mK has
naux = 6.7×10−5, and at 100 mK has naux = 8.3×10−3.
We expect naux to be significant only if the cooled value
of 〈a†a〉 is close to naux, and we verify this below.

The final parameter is the time over which we perform
the cooling. The optimal cooling will be obtained when
the control pulse swaps the energy into the auxiliary in
the shortest time. As the damping rates increase, we ex-
pect the Zeno effect to lengthen this minimum swap-time.
For each value of κ we obtained the (approximately) op-
timal time by hand. As expected, we find that this time
increases with κ (since γ/ω remains small).

We now perform the optimization over g(t), with
naux = 0, and plot the results in Figure 1, along with
the values of 〈n〉cool that are achieved using sideband
cooling (these are obtained by optimizing over the cou-
pling strength and the detuning [5]). We see from Fig. 1
that our “optimal control” cooling scheme is superior

to sideband cooling when κ is less than the value for
which sideband cooling achieves its best performance.
The second key result is that the improvement provided
by optimal control increases as γnT /ω decreases. For
(γ/ω)nT = 10−4, 10−3, and 10−2, the smallest values we
obtained for 〈a†a〉 are better than sideband cooling by
factors of approximately 13, 5, and 5, respectively (see
Figs. 1(a)-(d)). We note that a simple estimate of the
lowest achievable temperature is as follows: ideally the
time for the control to swap the energy is π/g ∼ π/ω, and
the bath injects approximately γnT phonons during this
time. Thus one expects that 〈n〉cool ∼ π(γ/ω)nT . This
closely matches the results in Fig. 1 when γnT /ω � 1.

Most of the cooling results in Fig. 1 are obtained using
no more than 24 time-segments (that is, 24 piecewise-
constant values for g(t)) per period. In many cases 10
segments is sufficient for optimal cooling. While the
piecewise-constant functions we have used for g(t) show
that the control timescales are feasible, these functions
are rather artificial. The actual experimental waveforms
will not have infinitely sharp transitions between seg-
ments. To show that such sharp transitions are unneces-
sary, for a single value of κ we perform the optimization
for a 12-segment pulse, now with linear transitions that
have the same duration as the constant segments. The
piecewise-constant pulse achieves 〈n〉cool = 3.39 × 10−4,
and the piecewise-linear pulse performs very similarly,
giving 〈n〉cool = 3.46 × 10−4. Both pulses are displayed
in Fig. 2. Note that the coupling is turned off at the end
of the piecewise-linear pulse, which is necessary to leave
the resonator in its ground state. This removes the need
to turn off the coupling adiabatically, as would be re-
quired by sideband cooling. To determine the waveform
for a specific experiment, one would ideally parametrize
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FIG. 2. (Color online) The optimal 12-segment piecewise-
constant control pulse for the coupling rate g(t) (inset (a)), for
one of the points in Fig. 1a, along with the time-dependence
of the average number of phonons. The parameters are nT =
100, γ = 1× 10−6ω, κ = 2.15× 10−4ω. Inset (b): An optimal
pulse with bounded transition-rates between segments, for the
same parameters, that gives essentially the same cooling. The
duration of the pulse in (a) is 0.55 resonator periods, and that
in (b) is 0.573.

g(t) so that it is well-matched to the waveforms produced
by the electronics. Since fast electronics generates transi-
tions shorter than 1 ns, the required control pulses should
be feasible for resonators with frequencies up to 100 MHz.
We have also examined the sensitivity of the cooling to
noise on the control pulse: with independent Gaussian
errors of 0.1% on each segment of the pulse in Fig. 2
(inset (a)), 〈n〉cool increases by about 30%.

As noted above, the linear interaction in Eq.(1) is usu-
ally obtained by using the nonlinear interaction xab

†b,
and strongly driving the auxiliary [3–5]. This induces an
effective frequency shift in the auxiliary of ∆ω = g2/(2ω),
with the result that changing g also changes the auxil-
iary frequency. Optimization shows that this frequency
shift must be cancelled to realize the above cooling. This
could be achieved by modulating the frequency of the
driving field, or by applying a second field to modulate
the frequency of the target.

We now determine the effect of thermal photons in the
auxiliary resonator (naux > 0). We perform the optimiza-
tion again for the left-most four points plotted in Fig 1(a),
for which γ = 10−6ω and nT = 100. With naux = 0 we
have 〈n〉cool = 10−4 × (2.8, 3.4, 4, 4.7). For naux = 10−4,
these become 〈n〉cool = 10−4 × (3.8, 4.4, 5, 5.7). The in-
crease in the average phonon number is approximately
the addition of naux. This confirms our intuition that
thermal photons are only significant when 〈n〉cool ∼ naux.

To summarize, we have shown that by modulating a
linear coupling, an essentially perfect state-swap can be

performed between two resonators within a single oscil-
lation period. This can be used to prepare a mechanical
resonator in the ground state, with fidelity higher than
possible with traditional sideband cooling.
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Note added: after submitting this work we learned of
concurrent work by Cerrillo et al. (arXiv:1104.5448) that
also treats pulsed cooling of resonators.
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