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We report magneto-transport measurements in wide GaAs quantum wells with tunable density
to probe the stability of the fractional quantum Hall effect at filling factor ν = 5/2 in the vicinity of
the crossing between Landau levels (LLs) belonging to the different (symmetric and antisymmetric)
electric subbands. When the Fermi energy (EF ) lies in the excited-state LL of the symmetric
subband, the 5/2 quantum Hall state is surprisingly stable and gets even stronger near this crossing,
and then suddenly disappears and turns into a metallic state once EF moves to the ground-state LL
of the antisymmetric subband. The sharpness of this disappearance suggests a first-order transition.
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FIG. 1. (color online) Schematic LL diagram for the symmetric (S) and antisymmetric (A) electric subbands as a function of
increasing density n. The index 0 or 1 following S and A is the LL quantum number (N), and the up- (↑) and down-spin (↓)
levels are represented by solid and dashed lines. The relevant energies are the subband separation (∆), the cyclotron energy
(h̄ωc), and the Zeeman energy (EZ). As we increase n while keeping the QW balanced, h̄ωc increases and ∆ decreases. The
S1↑ level crosses the A0↑ level when h̄ωc = ∆. The Fermi energy (red line) moves from S1↑ to A0↑ at the crossing (marked by
a circle). In our work, we study the evolution of the FQHSs near ν = 5/2 at this crossing. The upper left and lower right insets
show the self-consistently calculated electron charge distributions (red curves) and potentials (black curves) at zero magnetic
field for a 37-nm-wide QW, with densities of 2.09 and 2.48 ×1011 cm−2, respectively.

There is tremendous interest currently in the origin and properties of the fractional quantum Hall state (FQHS) at
the even-denominator Landau level (LL) filling factor ν = 5/2 [1]. This interest partly stems from the expectation
that the quasi-particle excitations of the 5/2 FQHS might obey non-Abelian statistics [2] and be useful for topological
quantum computing [3]. The stability and robustness of the 5/2 state, and its sensitivity to the parameters of the
two-dimensional electron system (2DES) in which it is formed are therefore of paramount importance and have been
studied recently both experimentally [4–12] and theoretically [13–16].

Ordinarily, the 5/2 FQHS is seen in very low disorder 2DESs when the Fermi energy (EF ) lies in the spin-up,
excited-state (N = 1), LL of the ground-state (symmetric, S) electric subband, namely in the S1↑ level (see Fig. 1). It
has been theoretically proposed that a non-Abelian (Pfaffian) ν = 5/2 FQHS should be favored in a ”thick” electron
system confined to a relatively wide quantum well (QW) [13–16]. But in a realistic, experimentally achievable wide
QW system, the electrons can occupy the second (antisymmetric, A) electric subband. It was demonstrated very
recently that, if the subband energy spacing (∆) is smaller than the cyclotron energy h̄ωc, so that EF at ν = 5/2 lies
in the ground-state (N = 0) LL of the antisymmetric subband (i.e., in the A0↑ level; see Fig. 1), then the ν = 5/2
FQHS is destroyed and instead the standard, odd-denominator FQHSs characteristic of the N = 0 LLs are seen [9, 17].
These observations imply that the node in the in-plane wave-function is crucial for the stability of the 5/2 FQHS.

Here we examine the stability of the ν = 5/2 FQHS in relatively wide GaAs QWs in the vicinity of the crossing
(at EF ) between the S1↑ and the A0↑ LLs (Fig. 1). We find that, when EF lies in the S1↑ LL, the 5/2 state is
remarkably robust and gets even stronger as the A0↑ LL is brought to within ∼ 1 K of the S1↑ LL. As the crossing
is reached and EF moves into the A0↑ LL, the ν = 5/2 state abruptly disappears.

Our samples were grown by molecular beam epitaxy, and each consist of a wide GaAs QW bounded on each side by
undoped Al0.24Ga0.76As spacer layers and Si δ-doped layers. We report here data for three samples, with QW widths
W = 37, 31 and 30 nm, and densities of n ≃ 2.5, 3.3 and 3.8 ×1011 cm−2, respectively. The widths and the densities
of these samples were carefully designed so that, for each sample, its ∆ is close to h̄ωc at the magnetic field position
of ν = 5/2. This enables us to make the S1↑ and A0↑ levels cross at EF by slightly tuning the density (Fig. 1), as
we describe below. The low-temperature (T = 0.3 K) mobilities of our samples are µ ≃ 950, 480 and 670 m2/Vs,
respectively. These are about a factor of three to four smaller than the mobilities for 2DESs in single-subband QW
samples grown in the same molecular beam epitaxy chamber; we believe it is the occupancy of the second electric
subband that reduces the mobility in the samples studied here.

Each of our samples has an evaporated Ti/Au front-gate and an In back-gate. We carefully control n and the
charge distribution symmetry in the QW by applying voltage biases to these gates [9, 17–19]. For each n, we measure
the occupied subband electron densities from the Fourier transforms of the low-field (B ≤ 0.5 T) Shubnikov-de Haas
oscillations. These Fourier transforms exhibit two peaks whose frequencies, multiplied by 2e/h, give the subband
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FIG. 2. (color online) Waterfall plots of Rxx and Rxy magneto-resistances showing the evolution of FQHSs for the 37-nm-wide
GaAs QW as the density is changed from 2.09 to 2.48 × 1011 cm−2. Except for the lowest density Rxx and Rxy traces, for
clarity each Rxx trace is shifted vertically by 50 Ω, and each Rxy trace by 0.05 h/e2.

densities, nS and nA; see, e.g., Fig. 1 in Ref. [19]. The difference between these densities directly gives the subband

separation ∆ = πh̄2

m∗
(nS − nA), where m∗ = 0.067me is the GaAs electron effective mass. All the data reported here

were taken by adjusting the front- and back-gate biases so that the total charge distribution is symmetric. We add
that our measured ∆ agree well with the results of calculations that solve the Poisson and Schroedinger equations to
obtain the potential energy and the charge distribution self-consistently.

Figure 2 shows a series of longitudinal (Rxx) and Hall (Rxy) magneto-resistance traces in the filling range 2 < ν < 3
for the 37-nm-wide QW sample, taken at different densities ranging from 2.09 to 2.48× 1011 cm−2. As n is increased
in this range, ∆ decreases from 83 to 79 K while h̄ωc at ν = 5/2 increases from 69 to 82 K, so we expect a crossing of
the S1↑ and A0↑ levels. This crossing manifests itself in a remarkable evolution of the FQHSs as seen in Fig. 2. At
the lowest density, Rxx shows reasonably well-developed minima at ν = 5/2, 7/3, and 8/3, as well as weak minima
at 11/5 and 14/5. These minima are characteristic of the FQHSs observed in high-quality, standard (single-subband)
GaAs 2DESs, when EF lies in the S1↑ LL (see, e.g., Fig. 1(a) of Ref. [9]). At the highest n, the Rxx minima at
ν = 5/2, 11/5 and 14/5 [20] have disappeared and instead there are fully developed FQHSs at ν = 7/3 and 8/3 as
well as developing minima at 12/5 and 13/5 [21]. All these features are characteristic of FQHSs when EF is in the
A0↑ LL [9, 17].

To better highlight the evolution of the FQHSs observed in Fig. 2, in Fig. 3 we show an interpolated, color-scale
plot of Rxx as a function of filling and density. Both Figs. 2 and 3 show that as n is increased, the evolution of the
FQHSs takes place from high-field (low ν) to low-field (high ν). The weak Rxx minimum at ν = 11/5 observed at
the lowest n, e.g., disappears quickly as n is raised and is followed by a strengthening of the 7/3 (and then the 12/5)
FQHS at higher n. Then comes the disappearance of the 5/2 FQHS, and eventually the strengthening of the 8/3
(and 13/5) FQHSs and weakening of the 14/5 Rxx minimum at the highest n. Such evolution is of course expected:
Since the S1↑ level crosses the A0↑ LL when ∆ = h̄ωc ∝ n

ν , we expect the crossing to occur at progressively higher
ν as n, and consequently h̄ωc at a given ν, increase. To assess the position of the expected crossing quantitatively,
in Fig. 3 we have included a dashed curve, marked ∆ = h̄ωc. The value of ∆ for this line is based on our measured
∆ from low-field Shubnikov-de Haas oscillations which agree with the results of our self-consistent calculations for a
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FIG. 3. (color online) A color-scale plot of Rxx for the 37-nm-wide QW demonstrating the evolution of the FQHSs as the
density is increased from n = 2.09 to 2.48 × 1011 cm−2. The bright regions correspond to large Rxx values, and the dark
regions to small Rxx where the quantum Hall states are observed. The white dashed line denotes the condition ∆ = h̄ωc.
Below (above) this line we expect EF to lie in the S1↑ (A0↑) level. The vertical bar provides an energy scale for the separation
between the S1↑ and A0↑ levels at ν = 5/2.

37-nm-wide QW. While we cannot rule out the possibility that ∆ is re-normalized at magnetic fields in the 2 < ν <
3 range, it appears that the dashed line corresponds to the position of the LL crossing accurately: the ν = 12/5
and 13/5 FQHSs, which are characteristic of EF being in the A0↑ level [21], are seen above the dashed line, and the
ν = 5/2 FQHS is seen only below this line when EF lies in the S1↑ LL. Interestingly, the ν = 7/3 FQHS is observed
on both sides of the dashed line and becomes stronger monotonically as n is raised.

Having established the crossing of the S1↑ and A0↑ LLs in Figs. 2 and 3, we now focus on our main finding, namely
the stability of the ν = 5/2 FQHS in the vicinity of this crossing. The data of Figs. 2 and 3 indicate that as n is
raised, the 5/2 FQHS initially becomes stronger. This strengthening is seen from the deepening of the Rxx minima,
and particularly from the very well developed Rxy plateau at n = 2.37 × 1011 cm−2 (compared, e.g., to the plateau
for n = 2.09 × 1011 cm−2, see Fig. 2). We will return to this intriguing observation later in the paper. Even more
striking, however, is that the ν = 5/2 FQHS, which is most robust at n = 2.37× 1011 cm−2, suddenly disappears when

the density is increased by less than 2% to n = 2.41× 1011 cm−2.

Data for the narrower QW samples, presented in Fig. 4, verify the above observations qualitatively. Moreover,
they allow us to quantitatively assess, through energy gap measurement, the robustness of the ν = 5/2 FQHS near
the LL crossing and the sharpness of its disappearance. The Rxx traces shown in Fig. 4(a) corroborate the data of
Fig. 2. A very similar evolution of the FQHSs is seen, including a sudden disappearance of the 5/2 state at high n.
Note that h̄ωc at which the 5/2 FQHS disappears in Fig. 4(a) is equal to 109 K, very close to the value of ∆ ≃ 112 K
for this 31-nm-wide QW at n = 3.31× 1011 cm−2. From the temperature dependence of the 5/2 Rxx minimum (Fig.
4(b)), we are also able to deduce an energy gap (5/2∆) for the ν = 5/2 FQHS. The measured gap, shown in Fig. 4(d)
as a function of the magnetic field position of ν = 5/2, exhibits a behavior consistent with the conclusions gleaned
qualitatively from the Rxx traces of Figs. 2 and 4(a): 5/2∆ increases as n is raised and then suddenly decreases. Note
in Fig. 4(d) that 5/2∆ collapses from its maximum value when n is increased by less than 3%. The sharpness of the
collapse suggests that the ground state of the 2DES makes a first-order transition from a FQHS to a metallic state
as EF moves from the S1↑ to the A0↑ level.

A remarkable feature of the data in Figs. 2-4 is that the ν = 5/2 FQHS becomes stronger with increasing n before it
collapses. This is clearly evident in the plot of 5/2∆ vs. B in Fig. 4(d). A qualitatively similar increase of 5/2∆ with n
was seen recently in 2DESs where only one electric subband was occupied [8], and was attributed to the enhancement
of the Coulomb energy and the screening of the disorder potential with increasing n. It is possible that our data can
be explained in a similar fashion. However, the relatively steep rise of 5/2∆, especially right before the collapse, is
puzzling.
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FIG. 4. (color online) (a) Waterfall plot of Rxx vs. 1/ν for the 31-nm-wide GaAs QW as n is changed from 2.79 to 3.31× 1011

cm−2. The traces are shifted vertically (by 60 Ω). (b) and (c) Arrhenius plots of Rxx at ν = 5/2 vs. inverse temperature for
the 31- and 30-nm-wide QWs at the indicated densities. Data are shifted vertically for clarity. (d) Measured energy gap for
the ν = 5/2 FQHS in both samples as a function of magnetic field or density. (e) Measured energy gaps for the ν = 5/2 and
7/3 FQHSs in the 30-nm-wide QW.

We have repeated the gap measurements for a slightly narrower (30-nm-wide) QW and the data, shown in Figs.
4(c) and 4(d), qualitatively confirm this anomalous behavior: 5/2∆ increases steeply with increasing n and then
suddenly drops once the density exceeds 3.83 × 1011 cm−2. Note that the higher n, and therefore larger h̄ωc, at
which 5/2∆ collapses in the narrowest QW sample are consistent with its larger subband separation. For this QW, at
n = 3.88× 1011 cm−2, we have ∆ ≃ 130 K, very close to h̄ωc = 128 K. A noteworthy observation in Fig. 4(d) data is
that, at a common density of n = 3.2× 1011 cm−2, 5/2∆ for the wider (31 nm) QW is nearly twice larger than 5/2∆
for the narrower (30 nm) QW. The observation of a larger gap for a wider QW, which was also reported in Ref. 10,
appears to be consistent with the theoretical expectation that a Pfaffian ν = 5/2 FQHS should be favored in a 2DES
with larger electron layer thickness [14]. However, according to the available calculations, while for thicker electron
layers the overlap between the numerically calculated wavefunction and the Pfaffian state is enhanced, the energy gap
is in fact reduced [14]. We conclude that the much larger gap observed in Fig. 4(d) at n = 3.2× 1011 cm−2 for the
31-nm-wide QW sample compared to the 30-nm-wide sample is related to the anomalous, steep rise of the gap before
the LL crossing occurs.

In Fig. 4(e), we also show the energy gap of the ν = 7/3 FQHS measured in the 30-nm-wide QW sample. It
increases monotonically with increasing B, consistent with our expectation that the 7/3 state should become stronger
when EF moves from the S1↑ to the A0↑ level [22]. We do indeed observe a strong rise in 7/3∆ at this field. Note
also in Fig. 4(e) that, at the lowest fields and far from the crossing, 5/2∆ and 7/3∆ in the 30-nm sample are of very
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similar magnitude, as seen previously is standard single-subband 2DESs when EF lies in the S1↑ level. However, it
appears from Fig. 4(e) data that 7/3∆ much exceeds 5/2∆ even before the crossing occurs.
In conclusion, we studied the stability of the ν = 5/2 FQHS when the lowest LL of the antisymmetric electric

subband (A0↑) crosses the second LL of the symmetric subband (S1↑). The 5/2 FQHS is remarkably robust when
EF lies in the S1↑ LL even as the A0↑ level is brought to within ∼ 1 K of the S1↑ level. As the crossing is reached
the 5/2 state abruptly disappears, suggesting a first-order transition from a FQHS to a metallic state.
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