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We investigate the dynamical charge response of the Anderson model viewed as a quantum RC
circuit. Applying a low-energy effective Fermi liquid theory, a generalized Korringa-Shiba formula
is derived at zero temperature, and the charge relaxation resistance is expressed solely in terms of
static susceptibilities which are accessible by Bethe ansatz. We identify a giant charge relaxation
resistance at intermediate magnetic fields related to the destruction of the Kondo singlet. The
scaling properties of this peak are computed analytically in the Kondo regime. We also show that
the resistance peak fades away at the particle-hole symmetric point.
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In recent years, an experimental effort has been de-
voted to manipulate and measure electrons in nanocon-
ductors in real time [1]. At frequencies in the GHz range
and cryogenic temperatures, current and noise measure-
ments provide information on the quantum dynamics of
charge carriers. Experiments have followed essentially
two directions, by either using on-chip quantum detec-
tors [2] or by directly measuring the current using low
noise amplifiers [3]. In an original experiment, Gabelli
et al. [4] have realized the quantum equivalent of an
RC circuit with a quantum dot connected to a spin-
polarized single-lead reservoir and capacitively coupled
to a metallic top gate, this setup being later used as
a single-electron source [5]. By applying an AC mod-
ulation to the gate voltage, they measured the admit-
tance of the dot at low frequency. A comparison with
the classical RC circuit allows to extract a capacitance
and a charge relaxation resistance. Their measurements
have confirmed the prediction [6, 7] of a quantized charge
relaxation resistance Rq = h/2e2 where e is the elec-
tron charge and h the Planck constant. This prediction
was recently shown [8, 9] to be valid for all interaction
strength. Ref. [8] also predicted the emergence of an ad-
ditional universal resistance Rq = h/e2 in the case of a
large dot.

The quantum RC circuit is described by the Ander-
son model [10] when the level spacing is sufficiently
large and electron transport is not spin-polarized in con-
trast to Refs. [6–9]. In that case, the gate voltage con-
trols the dot single-particle energy εd(< 0). In addi-
tion to being experimentally relevant, for the transport
through short nanotubes [11], small quantum dots or
even molecules [12], the Anderson model is fascinating
because it displays features of strong correlation with the
emergence of Kondo physics at low energy. The question
of how these correlations affect the quantization of the
charge relaxation resistance is a fundamental issue.

The linear charge response of the quantum dot to a
gate voltage oscillation defines the capacitance C0 and

the resistance Rq via the low frequency expansion [8]

e2〈n̂(ω)〉
−εd(ω)

= C0 + iωC2
0Rq +O(ω2) (1)

where n̂ the number of electrons on the dot. The capaci-
tance is thus the static response of the dot. The product
ωC2

0Rq describes relaxation towards the changing ground
state that implies energy dissipation [8, 14]. In this Let-
ter, we investigate the dynamical charge response of the
Anderson model at zero temperature and finite magnetic
fields and we evidence a giant charge relaxation resis-
tance phenomenon associated with the destruction of the
Kondo effect at intermediate fields.

More precisely, by applying a low-energy effective
Fermi liquid theory [15, 16], we derive a generalized
Korringa-Shiba formula [17] for the charge susceptibil-
ity that extends to finite magnetic fields. The charge
relaxation resistance then depends only on static suscep-
tibilities that are computed analytically resorting to the
Bethe ansatz solution [10, 18, 19] in the Kondo regime.
At zero magnetic field, the original Korringa-Shiba [17]
formula predicts the quantized value Rq = h/4e2 inde-
pendent of interactions. This result agrees with the non-
interacting scattering approach with two (spin) conduct-
ing channels [6, 7]. At large magnetic fields, the dot be-
comes spin-polarized, reducing electron transfer in both
spin channels, and the quantized value Rq = h/4e2 is re-
covered perturbatively. In the crossover regime between
these two limits, a peak was observed in the Numerical
Renormalization Group (NRG) calculations of Ref. [13],
where it is attributed to spin fluctuations in the dot.
Hereafter, we derive analytically the emergence of this
peak in the Kondo regime and derive its scaling proper-
ties. In particular, the peak is found to disappear com-
pletely at the particle-hole symmetric point.

The origin of the peak in the resistance is related to
the destruction of the Kondo singlet by the magnetic
field which gives more flexibility to the spin configura-
tion, while the charge remains frozen by interactions. As
a result, a change in the gate voltage significantly mod-
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ifies the magnetization, with an increase of dissipation
by particle-hole excitations. The charge however is rela-
tively insensitive to the gate voltage and the capacitance
remains small. An increasing dissipation ∝ C2

0Rq with
an almost constant capacitance C0 thus leads to an in-
creasing charge relaxation resistance Rq. A further in-
crease of the magnetic field eventually polarizes the spin
on the dot, reduces spin flexibility and thereby energy
dissipation. Hence, the charge relaxation resistance Rq
passes through a maximum when the Zeeman energy is
comparable to the Kondo energy.

The Hamiltonian of the Anderson model is given by

H =
∑
σ,k

εkσc
†
kσckσ +

∑
σ

εdσ n̂σ

+ Un̂↑n̂↓ + t
∑
k,σ

(
c†kσdσ + d†σckσ

)
,

(2)

with n̂σ = d†σdσ the number of spin σ electron on the dot,
n̂ = n̂↑ + n̂↓, the linear spectrum εkσ = εk − gσµBB/2
of conduction electrons characterized by the constant
density of states ν0, and the energy levels εdσ = εd −
gσµBB/2 of the dot. µB is the Bohr magneton, g the
Lande factor, B the external magnetic field and σ = ±
refers to ↑, ↓ states, respectively. The two terms in the
second line of Eq. (2) describe respectively Coulomb in-
teraction and tunneling from the dot to the lead with the
hybridization constant Γ = πν0t

2. In the presence of an
AC drive of very small amplitude, εd = ε0d+εω cosωt with
εω → 0, the system relaxes towards the evolving ground
state of the Hamiltonian and the dissipated power

P =
1

2
ε2ω ω Imχc(ω), (3)

which is given by linear response theory, is proportional
to the imaginary part of the dynamical charge suscepti-
bility χc(t− t′) = iθ(t− t′)〈[n̂(t), n̂(t′)]〉.

NRG calculations [16] and RG arguments [20] have
shown that the low energy properties of the Anderson
model (2) are always those of a Fermi liquid. The effec-
tive Fermi liquid Hamiltonian takes the form

H =
∑
σ,k

εkσa
†
kσakσ +

∑
k,k′,σ

Kσ(εd)a
†
kσak′σ. (4)

The free quasiparticles of the first term are related to
the original fermions ckσ by a phase shift of π/2. The
second term is a marginal perturbation corresponding to
a potential scattering at the impurity site. It defines a
line of fixed points parametrized by εd connecting the
Kondo regime (for εd ' −U/2) to the mixed valence
regimes (for εd ' 0 or εd ' −U). The potential is related
to the mean occupation of the dot via the Friedel sum
rule 〈n̂σ〉 = 1/2 − 1

π arctan [πν0Kσ(εd)]. Note that the
potentials Kσ(εd) formally also depend on U , Γ and B.
Again we study the response to the AC drive εd = ε0d +

εω cosωt with εω, ω → 0. Expanding the potentials as
Kσ(εd) = K0

σ +K ′
σ(ε0d) εω cosωt, we change the basis to

the one-particle states [16] that diagonalize the potential
scattering terms K0

σ = Kσ(ε0d). The remaining scattering
term in the Hamiltonian is given by

εω cosωt
∑
σ

K ′
σ(ε0d)

1 + (πν0K0
σ)2

∑
k,k′

ã†kσãk′σ, (5)

with the new quasiparticles ãk′σ. The derivative of the
occupation numbers with respect to εd in the Friedel sum
rule formula above introduces the static spin-dependent
susceptibilities χcσ = −∂〈n̂σ〉/∂εd. Once inserted into
Eq. (5), we obtain

H =
∑
σ,k

εkσã
†
kσãkσ +εω cosωt

∑
σ

χcσ
ν0

∑
k,k′

ã†kσãk′σ. (6)

In the static case ω = 0, the second term in Eq. (6) adds
the phase shift δσ = −πν0εωχcσ/ν0. The Friedel sum
rule translates it into a shift in the occupations δ〈n̂σ〉 =
−χcσ εω in agreement with the definition of the charge
susceptibilities. The Hamiltonian in Eq. (6) is extremely
general and it only assumes a low-energy Fermi liquid
fixed point. A similar model can be found in Ref. [21]
where the spin susceptibility is discussed.

Interestingly, the low energy model Eq. (6) provides
an alternative to compute the dissipated power Eq. (3).
Following standard linear response theory, it involves the
operators Âσ = (χcσ/ν0)

∑
k,k′ ã

†
kσãk′σ, coupled to the

AC excitation in Eq. (6), namely

P =
1

2
ε2ω ω

∑
σ

ImχÂσ(ω), (7)

with χÂσ(t − t′) = iθ(t − t′)〈[Âσ(t), Âσ(t′)]〉. The op-

erators Âσ create particle-hole pairs that are responsible
for energy dissipation. The calculation is straightforward
and gives, at zero temperature, ImχÂσ(ω) = πχ2

cσω, i.e.,
proportional to the density of available particle-hole pairs
with energy ω. An identification of Eqs. (3) and (7) fi-
nally results in our generalized Korringa-Shiba formula

Imχc(ω) = πω
(
χ2
c↑ + χ2

c↓
)
, (8)

obtained to lowest order [22] in ω. The physical mean-
ing of this expression is explicit. In the presence of the
AC driving applied to the gate voltage, relaxation is nec-
essary to adjust the occupation numbers to the instant
ground state of the Hamiltonian. This relaxation is real-
ized by particle-hole excitations, in each spin sector inde-
pendently, with amplitudes (see Eq. (6)) that are deter-
mined by the static charge susceptibilities χcσ controlling
the variations of the spin populations with the gate volt-
age. Eq. (8) simply states that the energy dissipated
in the relaxation mechanism increases quadratically with
these amplitudes as a result of the Fermi golden rule.
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At a general level, the low frequency properties of
the quantum RC circuit characterized by Eq. (1) derive
from the knowledge of the dynamical charge suscepti-
bility since 〈n̂(ω)〉 = −χc(ω)εd(ω) in the linear regime.
The capacitance C0 = e2χc is solely determined by the
static charge susceptibility χc = χc(ω → 0) = χc↑ + χc↓
that is calculated using Bethe ansatz. Hence, measuring
the capacitance realizes a charge spectroscopy [23]. At
zero magnetic field and large enough interaction, U > Γ,
χc develops a double-peak structure as a function of εd:
maximum in the valence regimes with a valley in the
intermediate Kondo regime around εd = −U/2 where
χc = 8Γ/πU2 for U � Γ. This strong reduction of ca-
pacitance, or charge sensitivity, characterizes the Kondo
limit where the charge is frozen. It contradicts the non-
interacting scattering theory [4, 6] where the capacitance
is proportional to the density of state and would there-
fore reveal the Kondo resonance [13]. The two approaches
are nonetheless reconciled by noting that, the Kondo res-
onance is mostly exhausted by spin fluctuations, and the
density of states of charge excitations of the Anderson
model, the holons, reproduces [24] the exact value of the
charge susceptibility and thus of the capacitance.

The Korringa-Shiba Eq. (8) substituted in the expan-
sion Eq. (1) expresses the resistance Rq in terms of static
susceptibilities, computable by Bethe ansatz. At zero
magnetic field, χc↑ = χc↓ = χc/2, Eq. (8) reproduces the
standard Korringa-Shiba relation and the charge relax-
ation resistance is found to be quantized and universal,

Rq =
h

4e2
, (9)

in agreement with the scattering approach involving two
equivalent spin channels [6, 7]. In the general case, we
introduce the charge magneto-susceptibility χm = χc↑ −
χc↓ which measures the sensitivity of the magnetization
to a change in the gate voltage. The resistance reads

Rq =
h

4e2
χ2
c + χ2

m

χ2
c

. (10)

For εd = −U/2, particle-hole symmetry implies that the
magnetization is extremal with respect to the gate volt-
age and χm identically vanishes. Eq. (9) is thus obtained
for all ratios of U/Γ.

In the rest of this Letter, we focus on the Kondo
regime U � Γ where the gate voltage explores the val-
ley between the Coulomb peaks located around εd ' 0
and εd ' −U . Far enough from these Coulomb peaks,
|εd|/Γ� ln(U/Γ), the charge on the dot remains of order
one and the renormalization [20] of the peak positions is
negligible. The charge susceptibility is computed pertur-
batively at zero magnetic field,

χc =
Γ

π

(
1

(εd + U)2
+

1

ε2d

)
, (11)
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FIG. 1. (a) Scaling function Φ(x) (full line) and (b) Envelope
function F (y) (see main text). F (0) = 0 at the particle-
hole symmetric point y = 0 where ∂TK/∂εd = 0. y = ±1
correspond to the two Coulomb peaks in transport or valence
regime. Green circles (εd = −0.15) and blue crosses (εd =
−0.1) are extracted from Fig. 3a) of Ref. [13], with U = 0.4
and Γ = 0.02, by implementing Eq. (14) and rescaling the
x axis. (c) Charge relaxation resistance for εd/U = −1/2 ±
0.1967 and various ratios of U/Γ = 15, 10, 7.

and remains constant as the magnetic field is increased
with gµBB �

√
|εd|Γ.

For moderate magnetic fields gµBB �
√
|εd|Γ, the

magnetization of the dot is known [10, 18] from the Bethe
ansatz solution of the Anderson model. In the Kondo
limit, it exhibits the scaling form,

m =
〈n̂↑〉 − 〈n̂↓〉

2
= f

(
gµBB

kBTK

)
, (12)

where TK = 2
√
UΓ/πe exp[πεd(εd + U)/2UΓ] is the

Kondo temperature and the scaling function f(x) con-
nects the asymptotes f(x) = x/

√
2πe for x � 1, and

f(x) = 1/2− 1/(4 lnx) for x� 1, i.e., for low and large
magnetic fields, e referring to Euler’s number. The de-
pendence of the magnetization Eq. (12) on the gate volt-
age, or εd, is via the Kondo temperature. Computing the
derivative of the Kondo temperature with respect to εd,
then one finds

χm =
π

Γ

2εd + U

U
Φ

(
gµBB

kBTK

)
. (13)

The charge magneto-susceptibility χm is a an odd func-
tion of εd + U/2 that vanishes at the particle-hole sym-
metric point. The scaling function Φ(x) = xf ′(x) is rep-
resented Fig. 1(a) in good agreement with Ref. [13]. It
exhibits a peak at x0 = 1.0697 with Φ(x0) = 0.1257.
Inserting the results Eqs. (11) and (13) into Eq. (10),
the scaling form of the charge relaxation resistance is ob-



4

tained,

Rq =
h

4e2

[
1 +

(
U

Γ

)4

F (y) (Φ(x))
2

]
, (14)

with y = (2εd + U)/U , x = gµBB/kBTK . The peak in
the resistance as a function of the magnetic field is de-
scribed by the scaling function Φ(x). It is also weighted
by the envelope F (y) = (π2/8)2y2(y2 − 1)4/(1 + y2)2,
shown Fig. 1(b). The agreement with Ref. [13], where
U/Γ = 20 is finite, is here only approximate. The
global maximum in the resistance is thus obtained for
εd/U = −1/2 ± 0.1967, gµBB = 1.0697 kBTK , with
Rq = 0.00142 (h/4e2)(U/Γ)4 which predicts a strong in-
crease of the resistance maximum with the ratio U/Γ, as
seen Fig. 1(c).

For large magnetic fields gµBB �
√
|εd|Γ, the free

orbital regime [20] is reached and straightforward per-
turbation theory applies. The result is

〈n̂↑〉 = 1− 1

π

Γ

εM − εd
, 〈n̂↓〉 =

1

π

Γ

εM + εd + U
,

with εM = gµBB/2. This leads to χm = 0 for εd = −U/2
as expected and, for very large magnetic fields gµBB �
(|εd|, εd + U), the quantized value Eq. (9) is recovered
for all gate voltages. Note that the standard result [6–9]
Rq = h/2e2 is only recovered for a fully polarized Fermi
sea in the lead.

To summarize, the peak in the charge relaxation resis-
tance is due to the enhancement of χm while the total
charge remains quenched and χc small. In the presence
of a finite magnetic field, the Kondo state is a mixture
of singlet and triplet spin configurations controlled by
the ratio of the Zeeman energy to the Kondo energy. A
change in the gate voltage modifies this ratio and, while
keeping the total charge of the dot almost constant, redis-
tributes the spin up and down occupations. This leads
to a larger number of particle-hole excitations for each
spin species and therefore increases dissipation. At the
particle-hole symmetric point, the Kondo energy is sta-
tionary with respect to the gate voltage such that no spin
redistribution occurs and the peak in the resistance is ab-
sent. It is worth mentioning that the predicted peak in
the charge relaxation resistance occurring at intermediate
magnetic fields can be observed using current technology
[4]. This work can be extended in various directions, by
considering either Zeeman effects on a large cavity char-
acterized by several energy levels [25] or a large number
of channels [26]. We finally stress that our result (10) for
the resistance is valid not only in the Kondo regime but
for all values of U , εd and B.
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