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We investigate the dispersion of the charge carrier plasmon in the three prototypical charge-density
wave bearing transition-metal dichalcogenides 2H -TaSe2, 2H -TaS2 and 2H -NbSe2 employing electron
energy-loss spectroscopy. For all three compounds the plasmon dispersion is found to be negative for
small momentum transfers. This is in contrast to the generic behavior observed in simple metals as
well as the related system 2H -NbS2, which does not exhibit charge order. We present a semiclassical
Ginzburg-Landau model which accounts for these observations, and argue that the vicinity to a
charge ordered state is thus reflected in the properties of the collective excitations.
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Introduction.–Charge-density waves are well known to
affect many of the single-particle properties of the ma-
terials in which they occur [1]. The experimental conse-
quences include the appearance of superstructure reflec-
tions in elastic X-ray scattering, the softening of acous-
tic phonons and the appearance of an excitation gap in
the single-particle spectrum [1, 2]. Much less, however,
is known about the possible influence of charge-density
waves (CDW) on collective excitations. Since the generic
CDW instability is accompanied by a strong enhancement
of the electronic susceptibility, it is natural to expect that
experimental probes which are sensitive to the susceptibil-
ity (and thus probe collective excitations), should reveal
characteristic features of the CDW as well. It is the main
aim of this Letter to show that this is indeed the case.

Many of the layered transition-metal dichalcogenides
(TMDC) are considered to be prototypical CDW materials
[3–7]. Because they are metallic, the conduction bands of
the charge ordered TMDC host collective density oscilla-
tions, or plasmons, in addition to the single-particle states
[8]. The typical energy required to excite such collective
modes is given by the plasma frequency ωp =

√
e2n/εm,

which scales with the density n of the conduction electrons
and easily reaches several eV for ordinary metals [9]. One
may therefore be tempted to conclude that fluctuations
of the CDW order, which occur on the meV scale, could
hardly play a role for the plasmon dynamics, contrary to
the anticipation mentioned above.

In the following we resolve this paradox and establish
a connection between the plasmon dispersion and the
presence of CDW order in the specific TMDC systems
2H -TaSe2, 2H -TaS2 and 2H -NbSe2 (with TCDW ∼ 120 K,
77 K and 33 K respectively). To this end we apply inelastic
electron scattering [9, 10] (often termed electron energy-
loss spectroscopy or EELS) to study the interplay of

(fluctuating) charge order with the plasmon mode of the
charge carriers. We show that in all three compounds
the plasmon has a negative dispersion at low values of
the momentum transfer, leading to a minimum in the
dispersion close to the CDW ordering wave vectors. This
is in contrast to the generic description of a metal in a
single-band model with a spherical Fermi surface, where a
low-momentum expansion of the Lindhard function gives
rise to a strictly positive plasmon dispersion [11].

A negative plasmon dispersion has been observed be-
fore in the heavy alkali metals [12, 13], where it has been
attributed to the presence of interband as well as intra-
band transitions [14, 15]. In a Wigner crystal, where the
plasmon mode is identical to an optical phonon mode,
the plasmon dispersion is even necessarily negative [16].
For the TMDC considered here however, the electronic
density is far larger than in a Wigner crystal. In addition,
the closely related material 2H -NbS2, which has a very
similar band structure to the TMDC studied here but does
not charge order, does have a strictly positive plasmon
dispersion. Motivated by this observation we use a semi-
classical approach based on a Ginzburg-Landau model
for the charge ordered state to show that the presence of
collective charge excitations associated with the vicinity
of a CDW transition strongly affects the dynamics of the
collective plasmon mode, and causes a dip in the plas-
mon dispersion close to the CDW ordering wavevector,
as observed in the charge ordered TMDC.

Experiment and Results.–Single crystals were prepared
according to the method described in [17]. Thin films
required for the transmission geometry were prepared from
the single crystals with the help of an ultramicrotome or,
whenever possible, by cleaving repeatedly with adhesive
tape. The experiments were carried out in a purpose-built
transmission EELS spectrometer [18], equipped with a
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Figure 1. (Color Online) The EELS intensity for the three
investigated compounds measured at room temperature. The
spectra have been normalized on the high-energy side and the
data for 2H -TaSe2 are partially reproduced from Ref. 17.

helium flow cryostat, and with the overall energy and
momentum resolution set to ∆E = 80 meV and ∆q =

0.035 Å
−1

respectively.

In Fig. 1 we show the behavior of the EELS intensity—
corrected for the contribution of the quasi-elastic line
according to the procedure outlined in Ref. 17—for 2H -
TaSe2, 2H -TaS2 and 2H -NbSe2, with momentum trans-
fers along the ΓK direction of the Brillouin zone (BZ) [19].
For small values of the momentum transfer the spectrum
is dominated by a pronounced peak around E = 1 eV
that corresponds to the plasmon excitation of the con-
duction electrons. Note that the overall shape of the
EELS intensity is consistent with earlier reports [20, 21].
With increasing momentum transfer the plasmon peak
loses strength and becomes successively broadened. In
addition, there is a redshift of the plasmon peak when
moving away from the center of the BZ.

This is further substantiated in the left panel of Fig. 2
where we show the plasmon dispersion extracted from
the peak positions of the corresponding curves in Fig. 1.
The behavior for 2H -NbSe2, 2H -TaSe2 and 2H -TaS2 is
strikingly similar in that the dispersions all have nega-

Figure 2. (Color online) Left: The plasmon dispersions for
2H -TaS2, 2H -TaSe2 and 2H -NbSe2 as extracted from the
peak positions in Fig. 1 and for 2H -NbS2 reproduced from
Ref. 22. The energies have been scaled with respect to the
plasma energy for each material, and the momentum transfers
with respect to the CDW ordering vector. Right: Temperature
dependence of the plasmon bandwidth for 2H -TaSe2, defined

as the difference of the plasmon energy between q = 0.1 Å
−1

and q = 0.5 Å
−1

. The vertical line indicates the onset of the
incommensurate CDW.

tive slopes for values of the momentum transfer below
the CDW ordering vector. In contrast, the dispersion
for 2H -NbS2, which does not charge order, is positive
everywhere. To further emphasize the link between the
negative plasmon dispersion and the presence of CDW
order, we show in the right panel of Fig. 2 the temperature
evolution of the plasmon bandwidth (defined here as the

difference of the plasmon energy between q = 0.1 Å
−1

and

q = 0.5 Å
−1

). In spite of the rather large error bars due to
the increased broadening for higher momentum transfers,
it can be seen that the onset of the CDW coincides with
an increase in the plasmon bandwidth.

Collective Modes.–To describe the plasmon excitations
in the TMDC, we adopt the formalism developed by
Bohm and Pines to separate the plasmonic collective
modes from the degrees of freedom of individual electrons
in the particle-hole continuum [8, 23]. Starting from
the unordered, normal state, the collective part of the
electronic Hamiltonian is reduced to:

Hplasmon =
∑
k<kc

(
P 2
k

2m
+
m

2
ω2
p(k)X2

k

)
, (1)

where the coordinates Xk describe the collective motion
of all conduction electrons, and the plasmon dispersion
is approximated by ω2

p(k) ' ω2
p + αk2, with α > 0 pro-

portional to the Fermi energy [23]. The collective modes
are effectively decoupled from the motions of the individ-
ual electrons for wavelengths longer than the electronic
screening length 1/kc.

As a phase transition is approached, collective fluctua-
tions of the order parameter associated with the impend-
ing order start to develop. These fluctuations are no longer
contained within the electronic screening length, and need
to be taken into account in the collective Hamiltonian.
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This can be done starting from a microscopic theory by in-
troducing an order parameter via a Hubbard-Stratanovich
transformation, and tracing over the electronic degrees of
freedom. The result is a Ginzburg-Landau energy func-
tional, which may then be included in the semiclassical
Hamiltonian [24]: H = Hplasmon +HGL.

The CDW order parameter Ψ is defined as ρ = ρ0(1+Ψ),
and describes fluctuations on top of the average charge
density ρ0. In the case of the TMDC, we write Ψ =
<{ψ1 + ψ2 + ψ3} as a sum of three complex variables
representing the three components of the observed triple-
q CDW. The most general form of the Ginzburg-Landau
energy then contains powers of Ψ as well as an interaction
term between the CDW components of the form |ψjψj+1|2,
which determine the stability of the triple-q pattern [25].
The propagation vectors of the CDW components are
aligned with the preferred ordering vectors ~Qj of the
charge density wave (as determined from the maximum

in the bare susceptibility) by terms proportional to | ~Qj ×
~∇ψj |2. If we assume this alignment to be perfect, we
can use the three-fold rotational symmetry of the TMDC

to write ψj(~r) =
∑

k ψ(k)ei(k/Q)~Qj ·~r, and the Ginzburg-
Landau energy takes on a particularly simple form [25, 26]:

FGL =
∑
k

(
a+

b

2
k2 +

c

2k2

)
ψ2(k). (2)

Here we explicitly include the Coulomb interaction c
between different parts of the charge density modulation.
The contribution from this term is non-negligible when
considering the dynamic and collective excitations of the
system encountered in the EELS experimental setup. In
the present formulation, the balance between the Coulomb
interaction c and the CDW stiffness b, which arises from
the gradients of ψj(~r) and prevents divergent modulations
at short wavelengths, also determines the size of the CDW
ordering vector Q = 4

√
c/b. The temperature dependence

of the parameter a drives the CDW transition, and is
defined as a = a0(T −TCDW)−

√
bc, so that the minimum

of FGL has zero energy at the transition temperature.
Notice that although the plasmon dispersion is expected

to be affected by the presence of CDW fluctuations both
above and below TCDW, we will focus on the disordered
regime only, so that higher order terms in the expansion
may be neglected. It is known that fluctuations of the
charge order persist far above the transition temperature
in the TMDC [27, 28], so that FGL may be assumed to
be an adequate approximation of the free energy even
beyond the immediate vicinity of TCDW.

Plasmons and Charge Fluctuations.–Before combining
the Ginzburg-Landau description of the CDW order pa-
rameter fluctuations with the Hamiltonian for the plasmon
modes, it should be realized that both address collective
excitations which cause modulations in the total electronic
charge distribution. The order parameter ψ(k) can thus
not be independent from the collective coordinate Xk. In

Figure 3. (Color online) The plasmon dispersions of Eq. (4).
Depending on the values of the model parameters, the disper-
sion can be either uniformly positive, of have a negative dis-
persion at low k followed by a minimum. The topmost, dashed
line shows the shape of a bare dispersion with a = b = 0 and
α = 0.75ω2

p/Q
2, for an arbitrary choice of Q. The second line is

the dispersion for a = −αn′m/2, the value at which the second
minimum first appears. Here we used c = bQ4 = 0.3n′mω2

p.
The line on the bottom shows the situation with a well devel-
oped minimum for the same value of c and a = −αn′m/2−

√
bc.

this sense, the interaction between the CDW order param-
eter and the plasmon dynamics is fundamentally different
from that between the plasmon and for example a su-
perconducting order parameter [26]. On the other hand,
there is still an important difference between ψ(k) and Xk.
The plasmon excitation at E = 1 eV involves electrons
throughout the conduction band, while the fluctuations of
the CDW order parameter occur at the meV scale, and
concern only a small number of electrons close to EF [1].
To relate the two quantities to each other, we use the fact
that statistical fluctuations of the density in general scale
as the square root of the average density of involved par-
ticles [29], to write n2CDW(k)/n2p(k) = n′/n. The density
modulations in the CDW are given by nCDW(k) = n′ψ(k),
with n′ the number of electrons involved in the CDW for-
mation per unit volume. The plasmon fluctuations are
defined as np(k) =

√
nk2Xk, with n the density of all

conduction electrons [23]. With this identification of the
different collective modes, the semiclassical description of
the combined plasmon-CDW system becomes:

H =
∑
k

{
P 2
k

2m
+

[
m

2
ω2
p(k) +

k2

2n′
(
2a+ bk2

)]
X2

k

}
(3)

In this expression we absorbed the Coulomb term of the
Ginzburg-Landau theory in the ‘bare’ plasmon energy to
avoid double counting of that interaction. Notice also that
the kinetic energy of the CDW order parameter, needed
to describe the dynamic charge fluctuations, is included
in the first term.

From this expression it is immediately clear that the
plasmon dispersion close to (but above) the CDW transi-
tion temperature is given by:

ω(k) =

√
ω2
p +

(
α+

2a

n′m

)
k2 +

(
b

n′m

)
k4. (4)

The overall shape of the plasmon dispersion in the vicinity
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of a CDW instability thus depends on the parameters de-
scribing the charge ordering transition. As shown in Fig. 3,
the temperature dependence of a implies that at high tem-
peratures, the dispersion is uniformly positive. As the
transition towards charge order is approached, a second
minimum may develop in addition to the infinite wave-
length plasma oscillation which always occurs at k = 0
with ω(0) = ωp. Notice that the second minimum exists

only for temperatures T < TCDW + (
√
bc− α[n′m/2])/a0.

That is, it develops above TCDW only if the material prop-
erties of the CDW system under consideration conspire
so that the combination of Coulomb energy and CDW
stiffness may overcome the bare plasmon dispersion. This
fact may help to explain why a negative dispersion is
observed in some CDW materials like the TMDC or for
example TTF-TCNQ [30], but others like for example the
blue bronze, have a strictly positive dispersion [31].

Using the definition c = n′2e2/ε for the strength of the
Coulomb interaction between different parts of the charge
density modulations in the CDW, the plasmon energy
at Q can be seen to approach the value ω2 = ω2

p(Q) −
n′e2/mε at the charge ordering temperature. This result
can be straightforwardly interpreted as indicating that
the potential energy cost of creating charge modulations
with wave vector Q in the electron distribution close to
EF has disappeared at T = TCDW. The kinetic energy
associated with the corresponding plasma oscillation and
the potential energy cost of displacing electrons deeper
in the conduction band are unaffected, and prevent the
plasmon mode from softening all the way to zero energy.
Summary and Conclusions.–In summary, we investi-

gated the dispersion of the charge carrier plasmon in
the prototype transition-metal dichalcogenides 2H -TaSe2,
2H -TaS2 and 2H -NbSe2. For all three compounds we
find a negative slope near the center of the Brillouin zone,
which contradicts the generic behavior expected for simple
metals and also differs significantly from the uniformly
positive dispersion in the closely related (but non-CDW)
system 2H -NbS2. The occurrence of the negative disper-
sion in only the TMDC with a CDW transition indicates
that an interaction between fluctuations of the charge
order and the plasma oscillations is responsible for the
deviation from the usual form of the dispersion. A semi-
classical description of the plasmon modes in presence of
the collective charge fluctuations induced in the vicinity of
the CDW transition, shows that their combined dynamics
indeed gives rise to the observed effects.

Whether the plasmon dispersion in a general CDW
system turns fully negative in the vicinity of the CDW
transition depends sensitively on microscopic material
properties. Regardless of the sign of the dispersion how-
ever, the generality of the theoretical considerations pre-
sented here shows that a renormalization of the plasmon
dispersion due to collective charge fluctuations will occur
in any material on the border of a charge ordering transi-
tion. This happens in spite of the very different energy

scales characterizing the two phenomena.
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