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Strong, surprising, and multifaceted effects of the width of the external surface layer ∆ξ and

internal stresses on surface-induced pre-transformation and phase transformations (PTs) is re-

vealed. Using our further developed phase-field approach, we found that above some critical ∆∗

ξ,

a morphological transition from fully transformed layer to lack of surface pre-transformation

occurs for any transformation strain εεεt. It corresponds to a sharp transition to the universal

(independent of εεεt), strongly increasing the master relationship of the critical thermodynamic

driving force for PT Xc on ∆ξ. For large εεεt, with increasing ∆ξ, Xc unexpectedly decreases,

oscillates, and then becomes independent of εεεt. Oscillations are caused by morphological tran-

sitions of fully transformed surface nanostructure. A similar approach can be developed for

internal surfaces (grain boundaries) and for various types of PTs and chemical reactions.

Reduction in the total surface energy during PTmay lead to various surface-induced phenomena—

e.g., surface pre-melting, ordering or disordering, martensitic PT, PT from martensitic variant

Mi to variant Mj, and barrierless nucleation [1, 2, 3]. Thus, transformation may start from

the surface from stable in bulk to metastable phases at temperature θ, which may be far from

the thermodynamic equilibrium temperature θe between phases; namely below θe for melting

and above θe for martensitic PTs. While some of our results are applicable to most of the

above PTs, we will focus on PTs during cooling, which include martensitic PTs. When the

thermal driving force X = (1 − θ/θe)/(1 − θc/θe) (θc is the temperature of the loss of stabil-

ity of the parent phase) for martensitic PT increases and approaches zero, a few nanometers

thick transformed layer appears, grows, and looses its thermodynamic stability, and transfor-

mation propagates through the entire sample. Phase-field or Ginzburg-Landau (GL) approach

is widely used for simulation of the surface-induced PTs [3, 4, 5, 6]. PT in this approach is

described in terms of evolution of a single or multiple order parameter(s). The martensitic
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PT below is described by n order parameters ηi that vary from 0 for austenite A to 1 for

martensitic variant Mi. Melting is described by the same potential for a single order parameter

[6]. Significant advances were recently achieved in generalization for multivariant martensitic

PTs, formulation of a noncontradictory expression for surface energy versus ηi, coupling to

advanced mechanics, and consistent expression for interface tension [5, 6].

Despite this progress, two major contradictions are present in the current GL approaches

to surface-induced phenomena. (a) While GL approach resolves finite width ∆η of interfaces

that are responsible for PTs, external surface is sharp, although its width is comparable to

∆η. (b) A sharp external surface also does not permit a correct introduction of surface tension

using the method that we developed for the phase interfaces [5, 6]. The goal of this paper is

to introduce and study the effect of finite-width of an external surface coupled to mechanics

with the help of our further developed GL approach. Thus, a surface (e.g., solid-gas) layer

of the width ∆ξ is described by a solution of GL equation for an additional order parameter

ξ. Obtained results (Figs. 1-6) revealed multiple unexpected effects of the surface layer and

mechanics, including morphological transitions in the nanostructure, which drastically change

our understanding and interpretation of transformation behavior and results of measurements.

Deformation of crystal lattice of A into lattice of Mi is described by transformation strain

tensor εεεti, which in our case is taken for cubic-tetragonal PT in NiAl. To elucidate the effect

of internal stress generated by εεεti in different materials, we considered transformation strain

kεεεti with 0 ≤ k ≤ 1. With increasing X, a stationary nanostructure ηi(rrr) (rrr is the position

vector) varies (Fig. 4). The critical surface nanostructure ηc(rrr) corresponds to the critical

driving force Xc above which the entire sample transforms.

For neglected mechanics, two branches on the curve Xc versus dimensionless width of the

surface layer ∆ξ = ∆ξ/∆η are obtained (Fig. 1b). For ∆ξ ≪ 1, the effect of the surface layer

is negligible and Xc and ηc are the same as for the sharp surface. However, for some critical

and quite small ∆ξ
∗
= 0.166, the slope of the curve Xc(∆ξ) has an unexpected jump and a

drastic increase in the critical driving force occurs with increasing ∆ξ. Critical nanostructure

undergoes morphological transition at this point, from a homogeneous layer along the surface

with the maximum value ηmax
c ≃ 1 (as in Figs. 2a-b), to a thin strip in the middle of the

surface layer with very small ηmax
c ≃ 10−5. This means that as soon as barrierless nucleation
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starts from the surface, it spreads over the entire sample. Allowing for mechanics (i.e., energy

of internal stresses) increases Xc with increasing magnitude of the transformation strain k, as

expected. However, for some critical width ∆∗
ξ(k), the curve Xc(∆ξ, k) for any k reaches the

master curve for neglected mechanics X0

c (∆ξ) (k = 0) and coincides with it for larger ∆ξ. A

jump in slope in all curves Xc(∆ξ, k) at ∆
∗

ξ(k) is accompanied by a morphological transition to

very small ηmax
c ≃ 10−5, as with neglected mechanics. This transition explains the lack of the

effect of elastic energy on the critical driving force for PT Xc for ∆ξ > ∆∗
ξ(k): because for the

critical nanostructure ηmax
c is very small, then the transformation strain and elastic energy are

negligible as well. While for k = 1/3 the critical driving force for PT is practically independent

of ∆ξ < ∆∗
ξ (as with neglected mechanics), for k = 2/3 and 1, Xc surprisingly reduces with

increasing ∆ξ before morphological transition and the curve Xc(∆ξ, k) has a ν-shape at the

morphological transition point ∆∗
ξ(k). One more finding is that for k = 1, there is oscillation

at the curve Xc(∆ξ) caused by three morphological transitions in the critical nanostructure

(Fig. 2). We designate contractions of tensors over one and two indices as AAA···BBB = {Aij Bjk}

and AAA:::BBB = Aij Bji, respectively; ∇∇∇ is the gradient operator in the deformed state.

Phase-field model. The current model generalizes our recently developed model [5] by

including the surface layer. Thus, an additional order parameter ξ describes a smooth transition

between solid (ξ = 0) and surrounding (ξ = 1), e.g., gas. The full model is presented in

supplementary materials [7]. Here, we will discuss the structure of new equations only. The

Helmholtz free energy per unit undeformed volume,

ψ = ψe +
ρ0
ρ
ψ̆θ + ψθ +

ρ0
ρ
ψ∇ +

ρ0
ρ
ψξ(ξ,∇∇∇ξ, ηk); (1)

ψe = 0.5(1− φ(ξ))(Kε2
0e + 2µeeee:::eeee); φ(ξ) = ξ2(3− 2ξ),

contains the energy ψξ(ξ,∇∇∇ξ, ηk) for surface layer and the elastic energy ψe with bulk K and

shear µ moduli, which smoothly reduce to zero within surface layer. Here, ρ0
ρ
are the ratio of

mass densities in the undeformed and deformed states, ψ̆θ, ψθ, and ψ∇ are the contributions

to ψ related to the double-well barrier, thermal energy, and energy related to ∇∇∇ηi, ε0e and

eeee are the elastic volumetric and deviatoric strains. The energy of the surface layer per unit

deformed volume is [7]

ψξ = Jξ2(1− ξ)2 + 0.5βξ(∇ξ)
2 =
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q(ηi)/∆ξ

(

16.62ξ2(1− ξ)2 + 0.542∆2

ξ(∇ξ)
2
)

, (2)

where βξ and J are the parameters, and q(ηi) is the surface energy of the sharp external surface.

Eqs.(1) and (2) lead to the GL equations for ξ and ηi:

1

Lξ

∂ξ

∂t
=
q(ηi)

∆ξ

(

1.083∆2

ξ∇
2ξ − 66.48ξ(1− ξ)(0.5− ξ)

)

−
ρ

ρ0

∂ψe

∂ξ
; (3)

1

L

∂ηi
∂t

= −
ρ

ρ0

∂ψ

∂ηi
|εεε +∇∇∇ ·

(

ρ

ρ0

∂ψ

∂∇∇∇ηi

)

, (4)

where L and Lξ ≫ L are the kinetic coefficients. For neglected ψe, Eq.(3) has solution for a

stationary surface layer [6]: ξs = [1 + exp(5.54x/∆ξ)]
−1. For neglected mechanics and single

stationary surface layer orthogonal to x, Eq.(3) simplifies to (ψ̄θ = ψ̆θ + ψθ)

1

L

∂ηi
∂t

= β∇∇∇2ηi −
∂ψ̄θ

∂ηi
−

33.24

∆ξ

∂q(ηi)

∂ηi
ξ2s (1− ξs)

2. (5)

Problem formulation. Material parameters, initial and boundary conditions are given in [7].

The finite element code COMSOL was utilized for plane stress 2D problems. Rectangular 25×

12.5nm2 sample discretized with triangle Lagrange elements with quadratic approximation was

treated. All sides are stress-free, excluding zero vertical displacement at the upper and lower

horizontal sides. Surface layer was introduced at the right vertical line only. We considered: GL

equation without mechanics; GL equations with mechanics, for k = 1/3, 2/3, 1, with elastic

properties independent of ξ and without surface stresses; the same with elastic properties

dependent on ξ; and the same with surface stresses. Scale effects and morphological transitions.

First, the simplest model (Eq.(5)) with neglected mechanics (which is generic for various types

of PTs) is analyzed. Since the magnitude of the local contribution of the surface layer to the

GL Eq.(5) scales with 1/∆ξ (Fig. 1a), an increase in ∆ξ should suppress nucleation. Also,

for ∆ξ ≪ 1 the results should coincide with those for the sharp external surface. Both of

these predictions are confirmed by numerical simulations (Fig. 1b); however, all other results

are counterintuitive and unexpected. The critical thermodynamic driving force for PT Xc

vs. ∆ξ and some corresponding critical nanostructures for single M1 are presented in Figs.

1-2, respectively. For neglected mechanics, the numerical solution for ξ(x) is well described
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by ξs(x); thus simple Eq.(5) is valid. Two branches on the curve Xc(∆ξ) are obtained (Fig.

1b). For ∆ξ ≪ 1, the effect of the surface layer is negligible; Xc, ηc, and interface velocity

for X > Xc are practically the same as for the sharp surface; stationary and nonstationary

solutions are independent of y, ηmax
c = 1, and width of the transformed surface layer δsl

(determined from ηc = 0.5) is essentially larger than ∆ξ (Fig. 3; plots in Figs. 3-5 are for

the middle line of the sample). However, above some critical and quite small ∆ξ
∗
= 0.166, an

unexpected jump to a completely different regime occurs. Critical nanostructure undergoes

morphological transition to a thin strip in the middle of the surface layer with very small

ηmax
c ≃ 10−5. Consequently, as soon as surface barrierless nucleation starts, PT spreads over

the entire sample; thus, pre-transformation does not exist. The slope of the curve Xc(∆ξ) has

a jump (explained by a morphological transition), and a drastic increase in the critical driving

force occurs with increasing ∆ξ. For coupled GL and mechanics formulation (yet with neglected

surface stresses and change in elastic properties), Xc increases with increasing magnitude of the

transformation strain k. This is expected because of suppressing contribution of the energy of

internal stresses. For critical nanostructure, while it is homogeneous along y, the width of the

transformed layer δsl decreases with increasing k (Fig. 3) and ηmax
c is becoming smaller than

1. However, for some critical width ∆∗
ξ(k), the curve Xc(∆ξ, k) for any k reaches the curve

X0

c (∆ξ) for k = 0 and coincides with it for larger ∆ξ (Fig. 1b). That is why we call X0

c (∆ξ)

the universal (i.e., independent of εεεt and internal stresses) master dependence. At ∆∗

ξ(k) a

jump in slope in all curves Xc(∆ξ, k) occurs, which is caused by morphological transition to

very small ηmax
c ≃ 10−5, similar to the case with neglected mechanics. This transition explains

coincidence of the curves for different k, i.e., the lack of the effect of elastic energy on Xc for

∆ξ > ∆∗
ξ(k). Indeed, since for critical nanostructure ηmax

c is very small, then εεεt and elastic

energy are negligible as well. This result leads to new intuition for such a complex nonlinear

interaction between PT, surface phenomena, and mechanics.

While for k = 1/3 Xc does not change with increasing width of the surface layer (like for

neglected mechanics), for k = 2/3 and 1, Xc surprisingly reduces with increasing ∆ξ < ∆ξ
∗

and the curve Xc(∆ξ) has a ν-shape at the morphological transition point ∆∗

ξ(k) (Fig. 1b). For

k = 1, there is also oscillation at the curve Xc(∆ξ), caused by three morphological transitions

of the critical nanostructure (Fig. 2). Thus, almost homogeneous along y nanostructure for
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the sharp surface and ∆ξ = 0.066 changes to three different types of localized structures. Such

a structure is a result of competition between a promoting effect of the surface layer and a

suppressing effect of elastic stresses; localized structure leads to a reduction in elastic energy.

When variable elastic properties are included for k = 1, results for small ∆ξ are similar to that

with constant properties, i.e., there are some oscillations in Xc(∆ξ). However, reduction in

Xc with growing ∆ξ is much smaller, critical ∆ξ
∗
for morphological transition to small ηmax

c is

larger, and critical nanostructure is independent of y without morphological transitions below

∆ξ
∗
. For the complete model, when in addition the interface and surface tensions [7] are taken

into account, Xc increases for all ∆ξ because of suppressing effect of additional compression

stresses on transformational expansion along the surface. Pre-transformation starts at X

significantly smaller than Xc (especially for small ∆ξ) but η(r) did not change substantially,

while X increases up to Xc (Fig. 4). Such low sensitivity of surface nanostructure to the

driving force, within some range, may have practical importance. Critical nanostructure is

independent of y up to ∆ξ < 0.664, above which it advances more at the sample center.

Examples of evolution of nanostructure for single and two martensitic variants after crit-

ical nanostructure loses its stability after a slight increase in X are given in Figs. 5-6 and

supplementary movies [7]. The case with two variants is much more complicated for analy-

sis due to the possibility of reduction of elastic energy by combining variants and additional

scale parameters (the width of M1-M2 interface). To summarize, very strong and multifaceted

effects of the width of the external surface layer ∆ξ and internal stresses on surface-induced pre-

transformation and PT was revealed using our extended phase-field approach. Obtained results

change our understanding of surface-induced PTs and interpretation of experimental data. For

neglected mechanics (which is an acceptable approximation for melting, amorphization, and

for small transformation strain components along the surface), thermodynamic conditions for

the possibility of surface-induced PT are [2, 3] Γ = γM − γA + Eη < 0. where γ is the surface

energy. Our results show that for the chosen material parameters it is true for quite small

∆η ≥ 6∆ξ only. The fact that surface-induced melting was observed for various materials

[2, 3] means that solid-liquid interface is much thicker than solid-gas interface. For a thinner

phase interface, stationary surface-molten layer cannot exist and surface-induced PT occurs

spontaneously in the entire sample after some overheating. Lack of surface-molten layer and
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necessity for overheating was observed for various materials and specific orientations [2, 3] and

was usually interpreted as a consequence of Γ > 0. It is known [2, 3] that due to a signifi-

cant error in determining each of three surface energies in the above criterion, it is difficult to

predict a priory whether surface melting will occur. The same is valid for other PTs, such as

martensitic PTs and amorphization [1]. Our results show that surface-induced transformation

should not necessarily occur at Γ < 0 and that ∆ξ is an additional key parameter that strongly

affects surface-induced transformation and Xc. While allowing for finite ∆ξ suppresses surface-

induced PT for zero or small transformation strain, for larger εεεt there is a range of ∆ξ for which

an increase in ∆ξ promotes PT; however, for larger ∆ξ, PT is again suppressed. Finding ways

to control ∆ξ (e.g., by changing the composition or the surrounding of the surface layer) will

allow one to control the surface-induced phenomena and nanostructures. E.g., β− δ PT at the

surface of the β occurs at θe in the presence of nitroplastiziers only [8]. The revealed low sensi-

tivity of surface nanostructure to the driving force, within some range, also may have practical

importance. A similar approach can be developed for internal surfaces (grain boundaries and

immobile interfaces inside of composite or multiphase materials) and for various types of PTs

(electromagnetic, diffusive-displacive, and amorphization) and chemical reactions. Melting and

amorphization at grain boundaries for various materials [1] are corresponding examples.

The support of NSF, ARO, DTRA, AFOSR, and ISU is gratefully acknowledged.
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FIGURE CAPTIONS

FIG. 1 (color online). (a) Plot of the ξ−dependent term ξ2s (1 − ξs)
2/∆ξ in GL Eq.(5) vs.

x̄ = x/∆η for different ∆ξ. (b) Critical thermodynamic driving force Xc vs. ∆ξ for a single M1

and different cases: neglected mechanics (GL), coupled GL and mechanics with transformation

strain of εεεt/3, 2εεεt/3, and εεεt as well as with variable elastic properties (εεεt, φ(ξ)), and interface σσσst
η

and surface σσσst
ξ tensions (εεεt, φ(ξ), σσσ

st). The curve X0

c is approximated as X0

c = 1−0.267∆
−2/3
ξ .

FIG. 2 (color online). Critical nanostructures for the coupled GL and mechanics with εεεt for a

single M1 and some values of dimensionless width of the surface layer ∆ξ. Three morphological

transitions are observed with increasing ∆ξ.

FIG. 3 (color online). Profiles of the single order parameter η for ∆ξ = 0 and the order

parameters η and ξ for ∆ξ = 0.066 for different cases (described in Fig. 1b) vs. x.

FIG. 4 (color online). Profiles of the single order parameter η vs. x for some values of ∆ξ

for critical nanostructures (solid line) and nanostructures for smaller thermodynamic driving

forces (dashed line) for the (εεεt, φ(ξ), σσσ
st) model.

FIG. 5 (color online). Evolution of surface nanostructure for X > Xc and two different values

of ∆ξ for the case with transformation strain of εεεt and a single martensitic variant.

FIG. 6 (color online). Evolution of surface nanostructure for two martensitic variants for

different values of ∆ξ and the same thermodynamic driving force X = 0.7915.
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FIG. 1 (color online). (a) Plot of the ξ−dependent term ξ2s (1−ξs)
2/∆ξ in GL Eq.(5) vs. x̄ = x/∆η for

di�erent ∆ξ. (b) Critical thermodynamic driving force Xc vs. ∆ξ for a single M1 and di�erent cases:

neglected mechanics (GL), coupled GL and mechanics with transformation strain of εεεt/3, 2εεεt/3, and
εεεt as well as with variable elastic properties (εεεt, ϕ(ξ)), and interface σσσst

η and surface σσσst
ξ tensions (εεεt,

ϕ(ξ), σσσst). The curve X0
c is approximated as X0

c = 1− 0.267∆
−2/3
ξ .
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FIG. 2 (color online). Critical nanostructures for the coupled GL and mechanics with εεεt for a single

M1 and some values of dimensionless width of the surface layer ∆ξ. Three morphological transitions

are observed with increasing ∆ξ.
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FIG. 3 (color online). Pro�les of the single order parameter η for ∆ξ = 0 and the order parameters η
and ξ for ∆ξ = 0.066 for di�erent cases (described in Fig. 1b) vs. x.
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FIG. 4 (color online). Pro�les of the single order parameter η vs. x for some values of ∆ξ for critical

nanostructures (solid line) and nanostructures for smaller thermodynamic driving forces (dashed line)

for the (εεεt, ϕ(ξ), σσσ
st) model.
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FIG. 5 (color online). Evolution of surface nanostructure for X > Xc and two di�erent values of ∆ξ

for the case with transformation strain of εεεt and a single martensitic variant.
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FIG. 6 (color online). Evolution of surface nanostructure for two martensitic variants for di�erent

values of ∆ξ and the same thermodynamic driving force X = 0.7915.


