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Maintaining fuel ions hotter than electrons would greatly facilitate controlled nuclear fusion. The
parameter range for achieving this temperature disparity is shown here to be enhanced by catalyzing
the α-channeling effect (wave-induced simultaneous expulsion and cooling of α particles) through
minority ion heating. Specifically, a wave can extract energy from hot α particles and transfer it to
colder minority ions, which act as a catalyst, eventually forwarding the energy to still colder fuel ions
through collisions. In comparison with the traditional α-channeling mechanism, the requirements
are thereby relaxed on the waves that accomplish the α-channeling, which no longer have to interact
simultaneously with α particles and fuel ions. Numerical simulations illustrate how the new scheme
may increase, for example the effective fusion reactivity of mirror-confined plasmas.

PACS numbers: 52.65.Ff,52.55.Pi,52.55.Jd,52.50.Qt

Introduction. – Alpha particles born in DT fusion re-
actions carry almost 20% of the released fusion energy.
Before this energy is lost to electrons through collisions or
to plasma instabilities [1–8], it would be advantageous to
transfer it rapidly to fuel ions; with electrons kept cold,
so that the effective fusion reactivity can be increased [9–
11]. The means to accomplish such a transfer is the so-
called α-channeling technique [12], where the α particle
energy is extracted by waves which heat fuel ions simul-
taneously via resonant interactions. The α-channeling
wave can be marginally stable, interacting with both
species simultaneously [13] (possibly with external wave
feedback control), or convectively stable, first excited by
α particles and then damped on fuel ions [14, 15]. How-
ever, finding appropriate modes that would be able to
interact vigorously enough with both α particles and fuel
ions in a practical device can be challenging [14–17]. (For
example, in mirror machines, no such weakly-damped
modes have been identified yet that would allow trans-
ferring most of the energy [18].) Thus, expanding the
parameter range within which the α-channeling can be
practiced would be highly advantageous.

Here, a mechanism is proposed that relaxes the re-
quirements on suitable waves by combining the tradi-
tional α-channeling effect with minority ion heating [19–
22]. Specifically, we show that there exists a wave which
can extract energy from hot α particles and transfer it
to colder minority ions [23]. The minority ions act as a
catalyst, eventually forwarding the energy to still colder
fuel ions through collisions. We call the wave extracting
energy from the α particles the “extracting wave”. With
the minority catalyst, the extracting waves no longer
have to interact with α particles and fuel ions simulta-
neously. To illustrate how this concept can broaden con-
siderably the parameter space of useful waves, we focus
on α-channeling in mirror geometry [24], where roughly
suitable waves have already been identified [18].

Wave interaction with minority species. – Using mi-
nority species as a mediator means that the operating
wave is not required to interact resonantly with the fuel
ions. However, the minority ions must be in resonance

with the wave, meaning that ω ≈ nΩi, where ω is the
wave frequency, Ωi is the gyrofrequency of the minority
ions and n is an integer number. Similarly, the wave fre-
quency ω must obey a resonance condition with α parti-
cles satisfying ω ≈ mΩα for some integer m, where Ωα is
the α particle gyrofrequency [25]. The choice of the low-
energy minority ions is thus limited by the combination
of these two conditions:

nΩi ≈ mΩα. (1)

Yet another limitation is that satisfying Eq. (1) should
not imply a simultaneous resonance with fuel ions; oth-
erwise, a wave would be strongly damped, hindering ex-
traction of the α-particle energy. In particular, deu-
terium (D) and tritium (T) resonant parallel velocities,

which can be written as v
(ℓ)
D res = (ω − ℓΩD)/k‖ and

v
(ℓ)
T res = (ω − ℓΩT )/k‖, should be much larger than the
thermal ion velocities for all resonance numbers ℓ. Here
k‖ is the projection of the wave vector k on the direction
of the background magnetic field B.
To assess the choice of the minority ions quantitatively,

we focus, for simplicity, on mirror geometry, where two
candidate waves suitable for α-channeling were identified:
the fast Alfvén wave and the ion Bernstein wave [18].
Two distinct regimes are then possible, depending on the
parameter k⊥ρi, where ρi is the minority ion gyroradius
and k⊥ is the perpendicular projection of k.
First, consider the fast Alfvén wave with k⊥ρi ≪ 1. In

this case, the minority ion cyclotron heating power de-
creases with n and thus, n = 1 is advantageous. Choosing
n = 1 automatically requires that m = 1 also [Eq. (1)],
because hydrogen ions cannot be used as minority species
as their gyrofrequency is exactly twice of that of the fuel
deuterium. This means that the minority ions should
have Ωi ≈ Ωα. In particular, ions with Z = N−∆Z ≫ 1
are suitable, where Z and N are the number of protons
and neutrons in the nucleus and ∆Z ≪ N . On the other
hand, one must also have

ω/k‖ = ξeve, (ω − Ωα)/k‖ = ξαvα, (2)

where the coefficients satisfy ξα <∼ 1/2 in order to capture
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a large fraction of α particles and ξe >∼ 3 to avoid strong
wave damping on electrons. Here vα is the birth velocity
of 3.5MeV α particles and ve is the electron thermal
velocity. Combining these two equations, one obtains:

ω − Ωα

ω
=

ξα
ξe

vα
ve

. (3)

For 10 keV plasmas, the frequency difference ω − Ωα

should be smaller or comparable to 0.05Ωα, which sug-
gests that light ions (lighter than oxygen) would be un-
suitable for the minority ion heating technique.
Now consider waves with k⊥ρi >∼ 1. In this case,

higher cyclotron resonances can be employed, both for
α-particle energy extraction and minority ion heating.
However, the extracting wave may need to have much
larger intensity for α-channeling to remain efficient, be-
cause the quasilinear diffusion coefficient decays with k⊥ρ
[20, 26, 27]. It is for this reason that in the following we
focus our attention on fast Alfvén waves.

Regimes for the catalytic effect. – The requirement
that minority ions must cool down preferentially on fuel
ions imposes an upper bound on the extracting wave in-
tensity. Specifically, the heating must be slow enough
such that the minority species remain at energies much
lower than 1MeV, for otherwise they would heat elec-
trons instead. To avoid overheating, minority ions can
be injected in regions where the wave energy density is
smaller than its peak value (say, where the wave is evanes-
cent). Another way would be to detune the extracting
wave from the exact resonant with the minority ions. The
heating would then be determined by the tail of the wave
spectrum.
On the other hand, a lower bound on the extracting

wave intensity appears if the minority ion injection en-
ergy is lower than the majority ion thermal energy. In
this case, if the wave intensity is not sufficiently high, the
dominant energy transfer mechanism will be minority ion
heating by the background plasmas. To avoid this, one
should either use higher-intensity waves or inject minor-
ity ions with the energy close to or even above the energy
of the background species.
Finally, assuming that most minority ions are lost

through the device ends rather than at the walls, an-
other limitation is connected with collision-driven loss of
minority species through the loss cone. Specifically, since
minority ions are energetic, the energy outflow associated
with the particle escape must be kept small compared to
the total energy flow mediated by the minority popula-
tion.

Numerical model. – To address these effects quantita-
tively, we conducted numerical simulations of the minor-
ity ion and α particle dynamics by solving the Fokker-
Planck equation [28]

∂f

∂t
+

1

v⊥

∂

∂v⊥
(v⊥J⊥) +

∂J‖
∂v‖

= S. (4)

Here f(v‖, v⊥, t) is the particle distribution function, v‖
and v⊥ are the parallel and the perpendicular particle

velocities, S is the particle source, and

J⊥ = −D⊥⊥
∂f

∂v⊥
−D⊥‖

∂f

∂v‖
+ F⊥f, (5)

J‖ = −D‖⊥
∂f

∂v⊥
−D‖‖

∂f

∂v‖
+ F‖f, (6)

where the diffusion tensor D̂ and the particle drag F

contain terms due to both collisions with the back-
ground plasma and quasilinear particle diffusion [26,
28]. The particles are assumed trapped in a mirror
cell with a homogeneous magnetic field. The mirror
loss cone was simulated by using a boundary condition
f(v‖, v‖/

√
R− 1, t) = 0, where R is the mirror ratio.

The α-particle extraction time, the steady-state
minority-ion energy, and the energy loss due to escap-
ing ions were calculated in our simulations by finding the
stationary solutions of Eq. (4). These solutions were ob-
tained using the Monte-Carlo method: starting with no
particles in the system (f = 0), new particles sampling
the distribution S were injected and traced until the par-
ticle distribution reached the steady state.
While accurate solutions of the minority ion distribu-

tion function can be found by solving Eq. (4), the steady-
state minority ion energy and collisional energy flows can
be estimated using a simpler approach exploiting the fact
that for sufficiently large wave amplitudes, the minority
ion distribution function is highly anisotropic (v⊥ ≫ v‖
for most particles). By integrating over v‖, in steady
state Eq. (4) can then be put in the form of a one-
dimensional (1D) equation [29]:

F⊥g −D⊥⊥
∂g

∂v⊥
=

1

v⊥

v⊥∫

0

v′⊥S dv′⊥, (7)

where S =
∫∞

−∞
S dv‖ and g(v⊥, t) =

∫∞

−∞
f dv‖. To

simplify the boundary conditions, we take S ∼ δ(v⊥ −
v⊥ 0)δ(v‖ − v‖ 0) with v⊥ 0

>∼ v‖ 0 and assume that
the particle longitudinal motion is approximately unaf-
fected. In this case, most particles escape the device
with v‖ ≈ v‖ 0, corresponding to the boundary condition

g(v‖ 0/
√
R− 1, t) = 0. Notice that the exact location of

the loss boundary does not affect the profile of the par-
ticle distribution function above v⊥ 0.

Minority ion heating and heating of fuel ions. –

Numerical simulations, employing the model described
above, demonstrate the feasibility of catalyzing α-
channeling through minority ion heating for plasma pa-
rameters of practical interest. Specifically, we used R =
5; densities ne = 3 · 1013 cm−3, nD = 0.9ne, nT = 0.1ne;
and the temperatures Te = TD = TT = 10 keV, where
the indexes e, D and T denote electrons, deuterium, and
tritium, correspondingly. The background magnetic field
was varied to optimize the α-channeling efficiency, i.e., to
minimize the α-particle extraction time for the fixed wave
intensity. Recalling that |ω − Ωα| should be comparable
to 0.05Ωα, we chose 22Ne with Ωα − Ωi ≈ 0.1Ωα and a
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FIG. 1. The ratio χ of the energy absorbed by the fuel ions and that absorbed by electrons, obtained via numerical simulation
of Eq. (7) for 22Ne (f+/f− = 0.1) and 21Ne (f+/f− = 0.05) ions with injection energy 1.1 keV and loss energy 300 eV: (a)
χ(γ) at k⊥ρi = 0.45; (b) χ(k⊥ρi) at γ = 15. Here ρi is the gyroradius of 100 keV ions and γ = I/I0, where I is the wave
intensity and I0 is the wave intensity, for which the α particle quasilinear diffusion coefficient Dα

⊥⊥ can be approximated as
(v2α/τα)(J0f+ + J2f−)2. In our simulations, the quasilinear diffusion coefficient for minority ions was then approximated by
Di

⊥⊥ ≈ γ(Ωi/Ωα)
4(v2α/τα)(J0f+ + J2f−)2, where Jn is the Bessel function of order n with an argument k⊥v⊥/Ωi.

more rare isotope 21Ne with Ωα−Ωi ≈ 0.05Ωα as minor-
ity ions in all our simulations.
Let Efuel and Ee be the collisional energy flows from

minority to majority ions and from minority ions to elec-
trons correspondingly. The catalyzing technique is prac-
tical if the wave intensity I is larger than Imin, below
which Efuel < 0, but smaller than Imax above which mi-
nority ions are overheated and χ = Efuel/Ee becomes com-
parable or less than one. Specifically, we define Imax as
a wave intensity above which χ < 5 and less than ap-
proximately 80% of energy dissipated by minorities on
background plasma particles goes to the fuel ions. The
wave intensity must also be sufficient to extract α-particle
energy before the α particle slows down. Introducing
Iα as a wave intensity sufficient for extracting α parti-
cles on a time τα/2, where τα is the characteristic colli-
sional slowing-down time, we require that I > Iα. Cal-
culating numerically Imin, Imax and Iα, one can check if
Imin < Iα < Imax. If this inequality does not hold, then
the conditions must be modified in one of two ways: (a)
if Iα < Imin, the wave intensity or the minority ion in-
jection energy should be increased for the technique to
work and (b) if Imax < Iα, the α-channeling wave over-
heats minorities, which can be avoided by injecting ions
in the wave evanescent regions.
In our simulations, we studied dependencies of Imin,

Imax and Iα on the wave intensity, wave polarization and
k⊥/B entering the quasilinear diffusion tensor. The pa-
rameter k⊥/B, which has a large effect on the α-particle
extraction time, was chosen to minimize this time for a
fixed wave intensity. Following Ref. 18, we used the fast
Alfvén branch for the operating mode. In that case, the
ratio f+/f− of the amplitudes of the left- and right-hand
polarized components equals |Ωi−Ωα|/Ωα, thus yielding
f+/f− ≈ 0.1 for 22Ne ions and f+/f− ≈ 0.05 for 21Ne.
Our calculations of Imax were carried out by finding the

stationary minority distribution function solving Eq. (7)

for different parameter values. Fully ionized 22Ne and
21Ne atoms were injected at 1.1 keV and the loss bound-
ary was at 300 eV. As expected, χ was shown to be
monotonically decreasing with I (Fig. 1a) since hotter
minority ions tend to collide more frequently with elec-
trons, but not ions. The dependence of χ on k⊥/B, on the
other hand, turned out to be non-monotonic with a local
minimum at k⊥ ∼ ρ−1

i
(Fig. 1b), where ρi is the charac-

teristic gyroradius of the hot minority ions. This suggests
that low-k⊥ waves might be more advantageous for limit-
ing minority ion heating by a strong α-channeling wave.
Finally, comparing two polarizations f+/f− ≈ 0.05 and
f+/f− ≈ 0.1, the former was shown to be characterized
by a twice larger Imax (Fig. 1a).

To calculate Imin and Iα, we performed numerical sim-
ulations of minority ion and α particle diffusion by solv-
ing Eq. (4) using the Monte-Carlo method. First, we
found Iα and the optimal values of k⊥/B. Since the ex-
tracting wave does not interact with deeply-trapped α
particles having v‖ < ξαvα, we focused our attention on
extraction of α particles with v‖ > ξαvα. The source of
α particles was thus chosen to be mono-energetic with
v‖ > ξαvα and ξα = 1/2. Fixing the same plasma pa-
rameters as we used for determining Imax, Iα was cal-
culated for both polarizations and different k⊥/B values
by finding a wave amplitude sufficient to extract α par-
ticles on time τα/2. (The characteristic extraction time
is equal to the total number of particles for the station-
ary solution divided by the particle injection rate). For
both wave polarizations, the minimum of Iα was achieved
at f+J0(k⊥ρα) + f−J2(k⊥ρα) ≈ 0, where ρα = vα/Ωα.
Given the optimal k⊥/B, the corresponding magnetic
field equals B ≈ 0.9T for both polarizations. The ob-
tained minimum values of Iα were then compared to the
corresponding values of Imax. For f+/f− = 0.1, Iα was
found to be equal to 0.43Imax, while for f+/f− = 0.05,
Iα ≈ 0.2Imax. This means that the α-channeling wave is
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not expected to cause minority ion overheating in both
scenarios.

We also calculated Imin for the optimal value of k⊥/B.
For f+/f− = 0.1, Imin was calculated to be equal to ap-
proximately 0.15Imax, or 0.35Iα, while for f+/f− = 0.05,
Imin ≈ 0.2Imax and hence Imin ≈ Iα. These results sug-
gest that the minority ion heating with the α-channeling
wave characterized by I = Iα is feasible for 22Ne ions. For
21Ne ions, however, using wave intensities higher than Iα
might be necessary.

Energy loss with escaping particles. – Let us now
calculate energy flows Efuel and Ee and compare their sum
E to the energy loss W associated with minority ions.
Solving numerically the 2D Fokker-Planck equation (4)
with k⊥ρα ≈ 5.6, we obtained the following results. For
f+/f− = 0.05, one has E/W = 1 for I ≈ 2.3Iα, and
E/W ≈ 3.5 at I ≈ Ii. For f+/f− = 0.1, E/W = 1
for much smaller wave intensity I ≈ 0.7Iα, and, finally,
E/W ≈ 5.5 at I ≈ 2Iα. Thus, the energy lost with
minority ions can be made several times smaller than
the total energy mediated by minorities by increasing
the wave amplitude to a sufficiently high level. Note that
the successful implementation of the proposed technique
may require external wave control to ensure that the α-

channeling mode parameters remain near their optimal
values.

Conclusions. – A technique for improving the ef-
ficiency of magnetic fusion reactors by catalyzing α-
channeling through minority ion heating is proposed.
Considering a mirror geometry, we show that instead
of heating fuel ions directly, the α-channeling wave can
transfer energy to injected minority ions, which act as
a catalyst, forwarding the absorbed energy to yet colder
fuel ions. Very hot minority ions with energies of several
MeV tend to heat electrons rather than ions. However,
by solving the Fokker-Planck equation numerically, we
identify wave regimes for which the wave intensities are
large enough for efficient α-channeling, yet small enough
to avoid minority ion overheating. We also show that,
under a proper choice of the wave amplitude, the energy
loss through losing energetic minority ions can be much
smaller than the total energy mediated by the injected
particles. Note that the proposed technique may also cat-
alyze α-channeling in rotating plasma [32]. It stands to
reason as well that similar catalytic techniques can facili-
tate α-channeling in tokamaks, except that the operating
modes would be different in toroidal geometry.
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